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Abstract: Landslide susceptibility mapping (LSM) is an important element of landslide risk assess-

ment, but the process often needs to span multiple platforms and the operation process is complex. 

This paper develops an efficient user-friendly toolbox including the whole process of LSM, known 

as the SVM-LSM toolbox. The toolbox realizes landslide susceptibility mapping based on a support 

vector machine (SVM), which can be integrated into the ArcGIS or ArcGIS Pro platform. The toolbox 

includes three sub-toolboxes, namely: (1) influence factor production, (2) factor selection and da-

taset production, and (3) model training and prediction. Influence factor production provides auto-

matic calculation of DEM-related topographic factors, converts line vector data to continuous raster 

factors, and performs rainfall data processing. Factor selection uses the Pearson correlation coeffi-

cient (PCC) to calculate the correlations between factors, and the information gain ratio (IGR) to 

calculate the contributions of different factors to landslide occurrence. Dataset sample production 

includes the automatic generation of non-landslide data, data sample production and dataset split. 

The accuracy, precision, recall, F1 value, receiver operating characteristic (ROC) and area under 

curve (AUC) are used to evaluate the prediction ability of the model. In addition, two methods—

single processing and multiprocessing—are used to generate LSM. The prediction efficiency of mul-

tiprocessing is much higher than that of the single process. In order to verify the performance and 

accuracy of the toolbox, Wuqi County, Yan’an City, Shaanxi Province was selected as the test area to 

generate LSM. The results show that the AUC value of the model is 0.8107. At the same time, the 

multiprocessing prediction tool improves the efficiency of the susceptibility prediction process by 

about 60%. The experimental results confirm the accuracy and practicability of the proposed toolbox 

in LSM. 

Keywords: landslide susceptibility mapping; toolbox; SVM; automatic; multiprocessing;  

the whole process 

 

1. Introduction 

The occurrence of landslide disasters causes great losses to the economy and human 

life all over the world every year [1,2]. Natural events such as rainfall [3,4], earthquakes 

[5,6] and floods [7] often lead to a series of landslides. Landslide susceptibility mapping 

(LSM) is used to determine the probability of future landslides in the study area by com-

prehensively analyzing various topographic, geological and hydrological factors, as well as 
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human activity, alongside historical landslide activity in the study area [8,9]. LSM is of great 

significance to landslide risk management, human life safety and urban future planning. 

In recent years, LSM has attracted the attention of many scholars, and various related 

articles have been published. The methods of generating landslide susceptibility mapping 

mainly include empirical modeling based on expert experience [10,11], physically based 

models [12], data-driven statistical modeling [13–15] and machine learning models [16–19]. 

Compared with traditional methods, the machine learning models do not rely on expert 

experience, which reduce the subjectivity of evaluation and generally have high accuracy. 

With the development of geographic information system (GIS) software and open-source ma-

chine learning libraries, the machine learning methods are becoming increasingly popular. 

Compared with other machine learning algorithms, the support vector machine 

(SVM) method has been widely used in calculating landslide susceptibility because of its 

advantages in solving small-sample, nonlinear and high-dimensional classification prob-

lems [5,8]. However, the process of landslide susceptibility assessment using SVM is com-

plicated, consisting of multiple steps such as data preprocessing, influencing factor selec-

tion, dataset production, model training and prediction. Generally, when using SVM to 

generate LSM, researchers must work with a cross-platform. Terrain factors based on the 

Digital Elevation Model (DEM) (e.g., slope, aspect) rely on platforms such as ArcGIS or 

QGIS. Model training and parameter optimization usually adopt widely used program-

ming languages such as Python, R or MATLAB. In addition, Excel, SPSS software or pro-

gramming languages have been used for model accuracy evaluation and statistical analy-

sis in most previous studies. 

Tools related to landslide susceptibility mapping are usually available in the form of 

academic code, which requires users to have programming skills. Some studies have pro-

posed and applied several tools to evaluate landslide susceptibility. Osna et al. [20] devel-

oped an independent application (GeoFIS) to generate landslide susceptibility maps using 

the Mamdani fuzzy inference system (FIS). Sezer et al. [11] developed an LSM module 

based on expert experience with NetCAD architecture software. Jebur et al. [21] created a 

landslide susceptibility mapping toolbox using bivariate statistical analysis (BSA) based 

on ArcGIS. Zhang et al. [15] provided a landslide susceptibility assessment tool based on 

the optimized frequency ratio method, which itself is based on the ArcGIS platform. Tor-

izin et al. [22] provided an independent landslide susceptibility assessment application 

written in Python, Project Manager Suite (LSAT PM). Bragagnolo et al. [23] developed a 

free and open-source plug-in, namely r.landslide, based on the GRASS software of open-

source GIS, to generate landslide susceptibility mapping based on an artificial neural net-

work. Sahin et al. [24] integrated R and ArcGIS software and developed a landslide sus-

ceptibility mapping toolkit (LSM tool pack) based on logistic regression and random for-

est. Guo et al. [25] introduced a Python QGIS plugin [26] named FSLAM, which allows us 

to compute regional shallow landslide susceptibility based on the effective antecedent wa-

ter recharge and the event rainfall. 

Most of the above toolboxes are based on expert experience models or statistical mod-

els, such as the weight of evidence method, frequency ratio method and so on. These 

methods are simple in principle and easy to implement, but with limited accuracy. To 

date, only a limited number of previous studies have involved the development of land-

slide susceptibility mapping tools based on machine learning methods. At the same time, 

most tools only involve model training and prediction, instead of the whole process of 

LSM. In addition, most studies only use the single-factor pixel value corresponding to 

landslide point locations as samples for model training. However, landslides usually oc-

cur within a region and are affected by characteristics from the surrounding environment. 

Therefore, problems exist when constructing samples based on a single pixel [27,28]. The 

realization of regional-scale data construction is often complicated and time-consuming. 

To solve the above-mentioned problems, this research develops an LSM toolbox 

based on the ArcGIS platform (SVM-LSM toolbox). The toolbox includes data prepro-

cessing, factor selection, SVM model training and evaluation, and landslide susceptibility 
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map prediction, involving the whole process of LSM. Moreover, this toolbox only uses the 

ArcGIS platform, which avoids cross-platform operation and reduces user input parame-

ters as much as possible. The operation is simple, convenient and user-friendly. The sus-

ceptibility prediction process based on sliding windows is time-consuming. This tool pro-

vides a multiprocessing rapid prediction tool to sufficiently improve the production effi-

ciency of landslide susceptibility mapping. In addition, a tool for the rapid production of 

multi-channel block datasets is constructed to improve the efficiency of dataset making. 

It is worth noting that this toolbox is not limited to the mapping of landslide susceptibility 

based on SVM and can also be used for other binary classification problems based on 

SVM. Section 2 of this paper introduces the basic functions of the toolbox and a description 

of each module; Section 3 discusses the experimental research on the landslide suscepti-

bility mapping of the toolbox in Wuqi County, Shaanxi Province, China, and provides an 

analysis of the relevant results; and Section 4 presents the conclusion. 

2. LSM Toolbox 

2.1. LSM Workflow 

An overall flow chart of LSM based on SVM is shown in Figure 1. The process of 

generating LSM based on SVM consists of data collection, data preprocessing, dataset 

making, feature selection, model training and susceptibility map prediction. The data col-

lection includes historical landslide data, the coverage of the study area and landslide in-

fluencing factors, such as roads, rivers, faults, Normalized Difference Vegetation Index 

(NDVI), DEM, lithology and rainfall. Among them, landslide points, the coverage of the 

study area, roads, rivers and faults are vector data, NDVI, DEM and lithology are grid 

data, and rainfall is the NetCDF-4 (nc4) format. Data preprocessing includes calculating 

topographic factors (such as slope, aspect, etc.) based on DEM, converting line vector data 

to continuous raster factors, and nc4 data processing. For raster data, it is also necessary 

to clip them to the same study area range. Subsequently, based on landslide points and 

the range of the study area, the same number of non-landslide points are randomly se-

lected to construct negative samples. Then, the dataset is randomly divided into training 

samples and test samples in the ratio of 7:3. In addition, the Pearson correlation coefficient 

(PCC) and information gain ratio (IGR) are calculated for all the samples. Influencing fac-

tors are selected based on the calculation results; factors with high correlations or with 

less importance to landslide occurrence are removed. Then, the training and test sets are 

reconstructed according to the results of the feature selection. Finally, the training set is 

used to train the model, and an optimal SVM model is obtained through the comprehen-

sive analysis of parameters and evaluation indicators such as accuracy, precision, recall, 

F1 value, receiver operating characteristics (ROC) and area under the curve (AUC). The 

optimal model is finally used to predict the susceptibility index of the study area and gen-

erate a susceptibility map of the study area for subsequent analysis. 
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Figure 1. Flowchart of SVM-LSM toolbox. 

In this paper, a toolbox is presented to generate landslide susceptibility maps accord-

ing to the above-mentioned workflow. The LSM toolbox includes three sub-toolboxes: “1 

influence factor production”, “2 factor selection and dataset production” and “3 model 

training and prediction”, as shown in Figure 2. This toolbox is developed based on ArcPy 

and Python language and can be directly integrated into ArcGIS 10.1 (or higher) or ArcGIS 

Pro software. It is efficient and user-friendly. 

 
Figure 2. Overall module of SVM-LSM toolbox. 

2.2. Influencing Factor Production 

Landslide influencing factors are various factors that affect the occurrence of land-

slides through the study of the occurrence mechanism of landslides in the study area. The 
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occurrence of landslides is affected by various influencing factors. At present, there is no 

unified standard for the selection of influencing factors. Pourghasemi et al. [29] conducted 

a statistical analysis on the influencing factors used in the study and found that topo-

graphic factors, geological factors and human activities are the most commonly used fac-

tors for landslide occurrence. This toolbox provides a tool for generating relevant topo-

graphic factors based on DEM, a tool for converting roads, faults and rivers into continu-

ous raster data, and a rainfall processing tool. 

2.2.1. Topographic Factor Calculation 

This tool integrates other factors calculated by DEM, and automatically calculates 

other topographic factors such as slope, aspect, curvature, plane curvature, profile curva-

ture, relief amplitude, surface roughness, topographic wetness index (TWI) and other 

topographic factors based on DEM data in the study area. As shown in Figure 3a, it is 

necessary to only input DEM data and select the factors that need to be calculated. These 

factors can be calculated optionally according to the needs of users by checking the box in 

front of the factors to be calculated, but aspect must be calculated when calculating plane 

curvature, and slope must be calculated when calculating profile curvature, surface 

roughness or TWI. 

 

Figure 3. Influencing factor production toolbox interface: (a) topographic factors calculation; (b) 

convert line vector data to continuous raster factor; (c) rainfall data processing; and (d) batch clip-

ping of each factor layer. 
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2.2.2. Convert Line Vector Data to Continuous Raster Factor 

This tool automatically converts the line vector data of the study area into continuous 

raster data, such as distance to roads, distance to faults and distance to rivers. The conver-

sion principle adopts Euclidean distance. As shown in Figure 3b, the user only needs to 

input the line vector data to be converted and the result save path. 

2.2.3. Rainfall Data Processing 

The National Aeronautics and Space Administration (NASA, https://gpm.nasa.gov/, 

accessed on 24 December 2020) provides a Global Precipitation Measurement Mission 

(GPM). These are high-precision precipitation data obtained using multi-sensors, multi-

satellites and multi-algorithms combined with the satellite network and rainfall gauge in-

version, with a spatial and temporal resolution up to 0.5 h, 0.1° × 0.1° [30]. The monthly or 

daily rainfall data downloaded from NASA are in the .nc4 format, which is time-consum-

ing and laborious to convert into raster data one by one. Therefore, this tool provides a 

rainfall batch conversion tool to convert the .nc4 format data to the .tif format raster data. 

As shown in Figure 3c, the user only needs to input the rainfall data and specify the raster 

data output coordinate system. 

2.2.4. Batch Clipping of Each Factor Layer 

After the production of the factor layer data, the row and column numbers and cov-

erage of each factor layer data are usually inconsistent. This tool is used to batch clip the 

raster data of each factor layer according to the vector data of the study area in order to 

obtain the factor layer data of the study area. As shown in Figure 3d, this tool only needs 

the user to set the folder where the raster factors are located and the vector data of the 

study area; it can automatically iteratively select the .tif format files for clipping. All the 

raster data resolutions should be consistent. 

2.3. Factor Selection and Dataset Production 

2.3.1. Non-Landslide Data Generation 

This tool is used to generate non-landslide point data within the study area vector 

data layer. As shown in Figure 4a, the user inputs landslide points and the study area 

vector file and specifies the number of non-landslide points to be selected outside of a 

buffer and how many meters from the landslide point. First, the tool generates a buffer 

zone at a specified distance from the landslide point and erases the buffer zone layer on the 

study area layer to obtain the selectable range of non-landslide sample points. It then uses 

random points to generate the same number of non-landslide points within the optional 

range. The non-landslide points should be selected as far from landslide points as possible. 
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Figure 4. Dataset production and factor selected toolbox interface: (a) non-landslide data generation; 

(b) data sample production; (c) dataset split; and (d) PCC and IGR calculation. 

2.3.2. Data Sample Production 

This tool is used to generate multi-channel block sample raster data from vector point 

data. As shown in Figure 4b, the user inputs the vector point elements and the multi-

channel factor layer data and specifies the buffer distance, which is half of the actual dis-

tance represented by the cropped raster size. The tool uses vector point data to create a 

buffer and iteratively selects the buffer range corresponding to each point vector in order 

to cut the multi-channel raster data one by one, resulting in a single multi-channel block 
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dataset of each vector point named after the “FID” attribute value. When the buffer dis-

tance is less than the resolution of the raster data, the obtained sample has reached the 

point at which the landslide point is located. 

2.3.3. Dataset Split 

When using the machine learning methods for model training, it is common to split 

the samples into a training set and a test set in a certain ratio. The training set is used to 

train the model and the test set is used to test the generalization of the model and prevent 

overfitting. As shown in Figure 4c, users can specify the ratio of the training and test sets 

by themselves. Generally, the ratio of the training and test sets is 7:3. Finally, the sample 

paths and labels of the training and test sets will be given, respectively (0 for non-landslide 

and 1 for landslide), and the results are saved in a txt file. 

2.3.4. PCC and IGR Calculation 

Determining the most effective combination of the influencing factors for landslide 

susceptibility mapping is of great importance. If the influencing factors are not evaluated, 

this will not only cause data redundancy but will also affect the execution efficiency and 

prediction accuracy of the model [31]. At present, there is no optimal solution for the se-

lection of influencing factors, but they typically consist of two parts: correlation analysis 

and importance evaluation. This toolbox provides two of the most commonly used influ-

encing factor selection methods: PCC and IGR. The PCC is an index used to measure the 

correlation between the influencing factors. The closer its absolute value is to 1, the 

stronger the correlation between the two factors. The information gain ratio is an index 

used to evaluate the importance of each factor layer on landslide occurrence. The higher 

the IGR value, the greater the impact of this factor on landslide occurrence. Any factor 

with zero IGR does not influence landslide occurrence. As shown in Figure 4d, this tool 

calculates PCC and IGR based on the generated data samples and saves them in a txt file. 

Upon comprehensively considering the calculation results, factors with strong correlation 

and little influence on landslide occurrence are eliminated based on the principle that the 

lower the correlation is, the greater the importance is. 

2.4. Model Training and Prediction 

2.4.1. Image Generation to Be Predicted 

The different factor layers are stacked in a certain order to form multi-channel raster 

data, which is the image to be predicted. It is used for sample production and susceptibil-

ity map prediction. As shown in Figure 5a, this tool only requires the input of the path 

and stacking order of each factor layer. Here, the stacking order of the factor layers used 

for the image to be predicted should be consistent with the order of the factor layers in the 

model training samples. 
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Figure 5. Model training and prediction toolbox interface: (a) image generation to be predicted; (b) 

model training and performance evaluation of SVM; (c) landslide susceptibility map prediction (sin-

gle process); and (d) landslide susceptibility map prediction (multiprocessing). 

2.4.2. Model Training and Performance Evaluation of SVM 

This tool is used to generate SVM models with given parameters and provide evalu-

ation results of the accuracy of each model. As shown in Figure 5b, the user enters the 

directory in which the dataset sample is located along with the number of rows, columns 

and channels of the dataset. At the same time, the optional values of parameter gamma 



Remote Sens. 2022, 14, 3408 10 of 21 
 

 

and penalty factor C to be adjusted also should be given. The parameter adjustment 

method used in this tool is the grid search algorithm. 

SVM has certain advantages in solving the problem of small-sample classification 

[32]. The kernel function and slack variable are used to deal with the linear indivisibility 

of the sample data. At the same time, because the classifier is only determined by the sup-

port vector, SVM can effectively avoid overfitting. SVM attempts to classify samples by 

introducing kernel functions that map landslide influencing factors to a high-dimensional 

feature space, from which it attempts to locate the optimal hyperplane with the maximum 

spacing between landslides and non-landslides from the feature space [33]. Xu et al. [5] 

discussed the influence of different kernel functions of SVM on landslide susceptibility 

mapping. The results show that the prediction effect of the radial basis function (RBF) in 

SVM is optimum. Therefore, the kernel function of this tool defaults to RBF. 

The susceptibility map is equivalent to a binary classification problem. Landslides 

are marked as “1” and non-landslides marked as “0”. Thus, the confusion matrix can be 

constructed according to different combinations of real value and predicted value, and 

the model accuracy evaluation index can be constructed based on the confusion matrix. 

In this tool, accuracy, precision, recall, F1 value, receiver operating characteristic (ROC) 

and area under curve (AUC) were used to evaluate the prediction ability of the model. 

The calculation formula [6] is as follows. 

accuracy =
�� + ��

�� + �� + �� + ��
 (1)

precision =
��

�� + ��
 (2)

recall =
��

�� + ��
 (3)

�1 value =
2 × ��

2 × �� + �� + ��
 (4)

If the real result and predicted result are landslide, it is called true positive (TP); if 

the real result and predicted result are non-landslide, it is called true negative (TN); if the 

real result is landslide and the predicted result is non-landslide, it is called false negative 

(FN); if the real result is non-landslide and the predicted result is landslide, it is called 

false positive (FP). 

In the ROC, false-positive rate (FPR) is the x-axis and true-positive rate (TPR) is the 

y-axis. At the same time, the area under the ROC (AUC) is used to quantitatively evaluate 

the prediction accuracy of methods. The AUC value range is [0,1]. The larger the AUC 

value, the higher the accuracy of the model classification and the better the accuracy. 

FPR =
��

�� + ��
 (5)

�PR =
��

�� + ��
 (6)

2.4.3. Landslide Susceptibility Map Prediction 

This tool is used to predict landslide susceptibility in the study area, based on the 

optimal model, and obtain the landslide susceptibility map in the study area. In this tool, 

a sliding window with the same row and column numbers as the dataset is constructed to 

select the data to be predicted for input into the optimal model to obtain the susceptibility 

index until all rows and columns are sliding. The tool provides two options: single process 

(Figure 5c) and multiprocessing (Figure 5d). Single-process and multiprocessing tools can 

be used under ArcGIS and ArcGIS Pro, but the single-process tool speed is slow and the 
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multiprocessing tool is fast. In a single process, the user must only give the image to be 

predicted, the optimal model and the number of rows and columns of the dataset. In mul-

tiprocessing, the user must also specify “pythonw.exe” location. 

3. Results 

Taking Wuqi County, Shaanxi Province, China as an example, the developed toolbox 

was applied to carry out a landslide susceptibility assessment. 

3.1. Study Area 

The study area is located in Wuqi County, Yan’an City, Shaanxi Province 

(107°38′57″E~108°32′49″E, 36°33′33″N~37°24′27″N). It covers a total area of 3791.5 km2, en-

compasses a total population of 145,700 and has an altitude of 1233~1809 m. The study 

area has a warm, temperate, continental, semi-arid climate. It is dry and windy in spring, 

sees alternating drought and flood conditions in summer, is cool and wet in autumn and 

is cold and dry in winter, and the annual average temperature is 7.8 °C. The average an-

nual rainfall is 483.4 mm, and the total coverage of forest and grass is 49.6%. The Wuding 

and Beiluo River systems lie within the study area. The landform belongs to the hilly and 

gully area of the Loess Plateau. The terrain fluctuates greatly, the gully is long and the 

slope is steep [34]. The landslide type in the study area mainly belongs to Loess landslides. 

During the flood season, rainstorms or continuous rainfall will often induce landslides, 

collapses and debris flow of different scales, seriously threatening the lives and property 

safety of local people. Therefore, it is of great practical significance to carry out landslide 

susceptibility evaluation in Wuqi County. The location of the study area is shown in Fig-

ure 6. 

 

Figure 6. (a) Location of Shaanxi Province, (b) location of Wuqi County, Yan'an City, (c) landslide 

inventory mapping in Wuqi County. 

3.2. Preprocessing of Influencing Factors 

The influence factor data sources used in this example include DEM, roads, rivers, 

lithology, NDVI and rainfall. Lithology and NDVI were pre-processed into 30 m resolu-

tion raster data. For the acquired DEM data, the “topographic factor calculation” tool is 

used to generate slope, aspect, curvature, plane curvature, profile curvature, relief ampli-

tude, surface roughness and a topographic wetness index (TWI). At the same time, the 
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“convert line vector data to continuous raster factor” tool is used to produce the distance 

to rivers and distance to roads. Since there is no active fault in the study area and it is not 

affected by active faults, the distance to the fault is not considered. For the rainfall data 

(.nc4), the “rainfall data processing” tool is used to convert the monthly rainfall data ob-

tained by NASA into the corresponding raster data in batches, and the raster calculator is 

used to accumulate monthly rainfall data in order to obtain annual rainfall data. Finally, 

the “batch clipping of each factor layer” tool is used to batch cut the generated influencing 

factor data according to the vector data of the study area. Finally, a total of 14 landslide 

influencing factors are generated (Figure 7), and the spatial resolutions of all the factor 

data are 30 m. 

 

Figure 7. Landslide influencing factors in Wuqi County. (a) Altitude, (b) slope, (c) aspect, (d) curva-

ture, (e) plane curvature, (f) profile curvature, (g) relief amplitude, (h) surface roughness, (i) topo-

graphic wetness index (TWI), (j) normalized difference vegetation index (NDVI), (k) rainfall, (l) li-

thology, (m) distance to roads, (n) distance to rivers. 
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3.3. Factor Selection and Sample Generation 

There are 789 historical landslides in the study area, which can be divided into 175 

large landslides, 417 medium landslides and 197 small landslides. In this study, all the 

landslide locations are used to construct the landslide dataset. Based on the landslide 

point data, the “non-landslide data generation” tool was used to randomly generate the 

same number of non-landslide points, each of which should be at least 1 km away from 

all of the landslide points in the study area. 

Since the calculation of IGR and PCC must be based on all the sample data, the da-

taset needs to be created before the selection of influencing factors. Firstly, the “image 

generation to be predicted” tool is used to stack the generated data of 14 influencing fac-

tors in the study area in multiple channels. Then, the “data sample production” tool is 

used to make landslide and non-landslide block datasets based on the superimposed 

multi-channel images. In addition, the “dataset split” tool is used to divide the training 

samples and test samples in the ratio of 7:3, before saving the path and labels of the sam-

ples to the corresponding txt file, respectively. Finally, all the block datasets have fourteen 

channels, eight rows and eight columns. There are 1104 images in the training set and 474 

images in the test set, in which the landslide dataset is marked as 1 and the non-landslide 

dataset is marked as 0. 

After using the “PCC and IGR calculation” tool to calculate the PCC and information 

gain ratio of each factor layer based on the data samples, Figure 8 shows the results of the 

PCC calculation. It can be seen that the correlation coefficients between plane curvature 

and slope, TWI and slope, and relief amplitude and surface roughness are greater than 

0.5. The study area is located in the hinterland of the Loess Plateau which is a typical hilly 

and gully landscape with high topographic fragmentation and loose soils. The reason for 

such strong correlations is that the study area often suffers from severe rainfall erosion 

and river erosion. On the one hand, the greater the slope, the more severe the soil erosion. 

Therefore, the more complex the surface morphology, the greater roughness and relief 

amplitude of the surface. On the other hand, the steep slopes with low water retention 

capacity lead to low soil water content (TWI), and vice versa. Figure 9 presents the calcu-

lation results of the information gain ratio. The IGR values of 14 landslide influencing 

factors are greater than 0, indicating that these factors have an impact on the occurrence 

of landslides in the corresponding areas. In this study area, lithology has the greatest im-

pact on landslide occurrence, followed by NDVI, plane curvature, profile curvature and 

TWI, while curvature and relief amplitude have the least impact. Upon a comprehensive 

analysis of PCC and IGR, the two influencing factors of slope and relief amplitude were 

removed for Wuqi County, and the remaining 12 influencing factors were used for subse-

quent research. 

According to the evaluation results, the steps of “image generation to be predicted”, 

“data sample production” and “dataset split” should be repeated in decreasing order of 

information gain ratio (i.e., lithology, plane curvature, profile curvature, NDVI, TWI, as-

pect, surface roughness, distance to rivers, DEM, distance to roads, rainfall and curvature) 

to obtain the final image and sample data for further prediction. The number of channels 

of all the block datasets used is 12, and their row and column numbers are both eight in 

the subsequent analysis. 
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Figure 8. Pearson correlation coefficient matrix for the Wuqi County case study. Note that “slp” 

represents slope, “asp” represents aspect, “cur” represents curvature, “plancur” represents plane 

curvature, “profilecur” represents profile curvature, “rivers” represents distance to rivers, “roads” 

represents distance to roads, “lithology” represents lithology, “SroughnessC” represents surface 

roughness, “relief” represents relief amplitude, and “rainfall” represents rainfall. 

 

Figure 9. Information gain ratio for the Wuqi County case study. Note that “slp” represents slope, 

“asp” represents aspect, “cur” represents curvature, “plancur” represents plane curvature, “profile-

cur” represents profile curvature, “rivers” represents distance to rivers, “roads” represents distance 

to roads, “lithology” represents lithology, “SroughnessC” represents surface roughness, “relief” 

represents relief amplitude, and “rainfall” represents rainfall. 
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3.4. Model Training and Performance Evaluation 

The “model training and performance evaluation of SVM” tool is used to train the 

model based on the generated training data, evaluate the performance with the test set 

and plot the ROC curve. Of these, the SVM model uses the RBF kernel function. The model 

has two parameters: gamma and penalty factor C. The grid search algorithm is used to 

optimize the parameters, find the optimal set of model parameters and generate the opti-

mal model. The values of parameters gamma and C are selected from 0.01, 0.02, 0.05, 0.08, 

0.1, 0.2, 0.5, 0.8, 1, 2 and 5. Figure 10 shows the AUC values and the difference in accuracy 

between the training and test sets for different gamma and C values, which used gamma 

values as horizontal coordinates and C values as vertical coordinates. In the figure, the 

size of the circle represents the AUC value. The larger the circle, the greater the AUC value 

and the better the model performance. The color of the circle represents the accuracy dif-

ference between the training and test sets. If it exceeds 0.5, it is represented by 0.5. The 

greater the accuracy difference, the higher the degree of overfitting of the model and the 

worse the generalization performance. Consequently, comprehensive analysis shows that 

when gamma is 0.02 and C is 2, the AUC value is high, the accuracy difference is small, 

and the model is optimal. 

 

Figure 10. AUC values and accuracy differences under different parameter values. 

Table 1 shows the performance of the optimal model with the testing dataset, and 

Figure 11 shows its corresponding ROC curve. Among the 474 testing datasets, 169 land-

slides and 171 non-landslides were correctly predicted, while 68 landslides and 66 non-land-

slides were incorrectly predicted. The correct samples predicted by the model accounted for 

71.73% of the total samples, with a precision of 71.55% and a recall rate of 72.15%. At the 

same time, the AUC value of the model is 0.8029, indicating that the model has good pre-

diction performance and the result of the landslide susceptibility map is reliable. 
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Table 1. Evaluation index of the model performance. 

Evaluation Index Results 

Confusion matrix 

 Landslide Non-landslide 

Landslide 169 68 

Non-landslide 66 171 

Accuracy 0.7173 

Precision 0.7155 

Recall 0.7215 

F1 0.7185 

AUC 0.8029 

 

Figure 11. The ROC curve of the optimal model. 

3.5. Landslide Susceptibility Map Generation and Analysis 

With the trained optimal model, the “landslide susceptibility map prediction” tool is 

used to predict the generated image unit by unit according to the optimal model. The 

probability of each evaluation unit being predicted as a landslide is obtained to generate 

a landslide susceptibility map for the study area. The predicted susceptibility indexes lie 

between 0 and 1. The larger the susceptibility index is, the more susceptible the area is to 

landslides. The generated susceptibility map is divided into five levels—very low, low, 

moderate, high and very high—using the natural break method in ArcGIS. The landslide 

susceptibility map of Wuqi County after classification is obtained by SVM, as shown in 

Figure 12. 

It is clear in Figure 12 that the areas in Wuqi County with high and very high suscep-

tibility to landslides are mainly concentrated on both sides of rivers severely affected by 

soil erosion. Low- and very-low-susceptibility areas are mainly distributed in high-alti-

tude areas with limited human activity. The locations of historical landslides are well fit-

ted with the predicted results. The areas where landslides are relatively concentrated are 

predicted as high and very high susceptibility areas, which is in line with the actual situ-

ation. Table 2 shows the proportion of each graded area and the density of landslide points 

within each grade. It can be seen that the proportion of high- and very-high-susceptibility 

areas is 29.97%, and the proportion of low- and very-low-susceptibility areas is 49.18%. 

With increased susceptibility grade, the density of landslide points increases continu-

ously, which is in line with the actual situation of the susceptibility grade. The density of 



Remote Sens. 2022, 14, 3408 17 of 21 
 

 

landslide points in very-high-susceptibility areas is 0.77 and that in very-low-susceptibil-

ity areas is 0.04. 

 

Figure 12. Classification map of landslide susceptibility in Wuqi County. 

Table 2. Statistical analysis of each susceptibility class in Wuqi County. 

Classes Area (km2) Proportion (%) 
Landslide Density 

(Number/km2) 

Very low 924.43 24.28 0.04 

Low 948.24 24.90 0.08 

Moderate 794.02 20.85 0.14 

High 648.42 17.03 0.28 

Very high 493.02 12.94 0.77 

3.6. Toolbox Operation Efficiency Evaluation 

Although the “landslide susceptibility map prediction (single process)” and “land-

slide susceptibility map prediction (multiprocessing)” tools can be used under ArcGIS 

and ArcGIS Pro, it is recommended that they be used with ArcGIS Pro. Since Python 2.7 

installed in ArcGIS is generally 32-bit, it has extremely limited use of memory resources 

and can only use a maximum of 2G of memory when processing massive data. If it exceeds 

2G, a “Memory Error” will appear. Meanwhile, the Python 3 environment used by ArcGIS 

Pro is 64-bit, which can use more memory than the 32-bit Python, and therefore the 

“Memory Error” rarely occurs. 

Table 3 shows the computation statistics of various tools in ArcGIS and ArcGIS Pro 

software for Wuqi County, respectively. For evaluation, all the experiments are conducted 

on a Windows PC ×64 with a 2.30 GHz Gen Intel Core i7-11800H CPU, a 4 GB GeForce 

RTX 3050 Ti Laptop graphic card and 16 GB of RAM. 
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Table 3. Computation statistics of various tools with different software in Wuqi County. 

Tool ArcGIS ArcGIS Pro 

Topographic factor calculation 58 s 42 s 

Convert line vector data to continuous raster factor 1 min 9 s 34 s 

Rainfall data processing 57 s 50 s 

Batch clipping of each factor layer 18 s 17 s 

Non-landslide data generation 2 s 1 s 

Data sample production * 
landslide 5 min 22 s/4 min 46 s 4 min 34 s/4 min 29 s 

non-landslide 4 min 56 s/4 min 32 s 4 min 19 s/4 min 15 s 

Dataset split * 0.5 s/0.5 s 0.5 s/0.5 s 

PCC and IGR calculation 1 min 16 s 57 s 

Image generation to be predicted * 3 min 38 s/2 min 45 s 1 min 32 s/1 min 13 s 

Model training and performance evaluation of SVM 1 h 55 min 32 s 1 h 8 min 8 s 

Landslide susceptibility map prediction 

(single process) 
2 h 53 min 15 s 1 h 26 min 47 s 

Landslide susceptibility map prediction 

(multiprocessing) 
21 min 51 s 20 min 12 s 

Total † 5 h 19 min 27 s/2 h 48 min 3 s 2 h 58 min 39 s/1 h 52 min 4 s 

Notes: “Data sample production”, “dataset split” and “image generation to be predicted” tools must 

be run twice. * indicates that the first run time and the second run time, and † shows the total single 

process running time and the total multiprocessing running time. 

As shown in Table 3, the total time of the SVM-LSM toolbox for the ArcGIS single 

process is 5 h 19 min 27 s and that for the ArcGIS Pro single process is 2 h 58 min 39 s, 

which improves running efficiency by 44.08%. The main gap in running time is concen-

trated in the operation of the “susceptibility map prediction” tool. At the same time, the 

total time of the SVM-LSM toolbox in ArcGIS multiprocessing is 2 h 48 min 3 s and the 

total time in ArcGIS Pro multiprocessing is 1 h 52 min 4 s, which improves running effi-

ciency by 33.31%. The main difference in the running time is concentrated in the step of 

the “model training and performance evaluation of SVM”. The abovementioned two dif-

ferences are mainly due to their difference in the number of bits. Therefore, it is recom-

mended that the toolbox in ArcGIS Pro is run with 64-bit Python. In addition, under the 

ArcGIS platform, the running time of the “landslide susceptibility map prediction (multi-

processing)” tool is 2 h 48 min 3 s and the running time of the “landslide susceptibility 

map prediction (single process)” tool is 5 h 19 min 27 s, which shortens running time by 

nearly 2 h 31 min 24 s and improves running efficiency by 47.39%. Under the ArcGIS Pro 

platform, the running time of the “landslide susceptibility map prediction (multipro-

cessing)” tool is 20 min 12 s and the running time of the “landslide susceptibility map 

prediction (single process)” tool is 1 h 26 min 47 s, which shortens running time by nearly 

1 h 6 min 35 s and improves running efficiency by 76.72%. This shows that the multipro-

cessing prediction tool for the sliding window in this tool can greatly improve the effi-

ciency of susceptibility mapping. 

3.7. Model Selection: SVM 

As mentioned earlier, SVM is used in the toolbox. To assess whether it is optimal to 

employ SVM, comparisons with two other commonly used models, namely, decision tree 

(DT) and random forest (RF), are performed. Table 4 shows the operation efficiency and 

AUC values of different models. The DT model requires two parameters to be adjusted: 

max_depth and min_samples_leaf; the RF model requires five parameters to be adjusted: 

max_depth, max_features, n_estimators, min_samples_leaf and min_samples_split; and the SVM 

model requires two parameters to be adjusted: gamma and C. For the grid search method, 

the greater the number of model parameters, the higher the model training time complex-

ity, and the more time-consuming the model tuning is. In terms of model accuracy, for the 



Remote Sens. 2022, 14, 3408 19 of 21 
 

 

same training and testing datasets in Wuqi County, the AUC of the optimal RF model is 

0.8372, the AUC of the optimal SVM model is 0.8029, and the AUC of the optimal DT 

model is 0.7774. The AUC values of SVM and RF model are both higher than 0.8, indicat-

ing that these two models can better reflect the landslide susceptibility in this area. There-

fore, compared with the three models, the SVM model is friendlier to beginners, with 

fewer parameters to be adjusted, short running time and high accuracy. Therefore, we 

choose the SVM model to build the LSM toolbox. 

Table 4. The operation efficiency and AUC values of different models. 

Model 
Number of 

Parameters 

Training Time 

Complexity 

LSM Prediction (Multi-

processing) 
AUC 

DT 2 �(� ∗ �) 4 min 28 s 0.7774 

RF 5 �(� ∗ � ∗ � ∗ � ∗ �) 1 h 21 min 25 s 0.8372 

SVM (this study) 2 �(� ∗ �) 20 min 12 s 0.8029 

Notes: � represent the time complexity; m, n, l, k and j represent the number of optional values of 

different parameters, respectively. 

4. Conclusions 

This paper develops a tool known as the SVM-LSM toolbox, which integrates the 

whole process of landslide susceptibility mapping. The toolbox consists of three sub-

toolboxes: (1) influence factor production, (2) factor selection and dataset production, and 

(3) model training and prediction. The tool can be integrated into ArcGIS 10.1 (or higher) 

as well as ArcGIS Pro. The interface is user-friendly, easy to implement and provides mul-

tiprocessing prediction, which greatly improves prediction efficiency. In order to assess 

the performance of the toolbox, Wuqi County (an area highly prone to Loess landslides) 

is selected as the study area. Six basic factors are selected and a total of fourteen landslide 

influencing factors are obtained based on the influencing factor production tool. In the 

selection of influencing factors, the slope and relief amplitude factors are eliminated ac-

cording to the results of PCC and IGR. Finally, the model training tool is used to obtain 

the optimal model according to various evaluation indexes and generate a susceptibility 

map of the study area. 

The results show that the model has good prediction performance and high predic-

tion accuracy. The susceptibility areas of Wuqi County are mainly concentrated along riv-

ers severely affected by soil erosion. In short, the SVM-LSM toolbox optimizes the com-

plex susceptibility mapping process, avoids the cross-platform operation of traditional 

workflow and greatly shortens the prediction time of the susceptibility map. At present, 

the toolbox has only been tested with ArcGIS and ArcGIS Pro software on the Windows 

system. In the future, it will be integrated into other commonly used GIS processing soft-

ware, such as QGIS, for expansion. Furthermore, more machine learning models can be 

incorporated, and automatic parameter tuning function can be developed to further im-

prove the user-friendliness and universality of the toolbox. 
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