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A B S T R A C T   

Landslides are one of the most serious natural hazards along the Sichuan-Tibet transportation corridor, which 
crosses the most complicated region in the world in terms of topography and geology. Landslide susceptibility 
mapping (LSM) is in high demand for risk assessment and disaster reduction in this mountainous region. A new 
model, namely Convolutional-Squeeze and Excitation-long short-term memory network (Conv-SE-LSTM), is 
proposed to map landslide susceptibility along the Sichuan-Tibet transportation corridor. Compared with con-
ventional deep learning models, the proposed Conv-SE-LSTM adaptively emphasizes the contributing features of 
the conditioning factors by Squeeze and Excitation network (SE), and elaborately arranges the input order of the 
conditioning factors to utilize their dependence by long short-term memory network (LSTM). Considering the 
complex geological conditions and the wide range of the study area, the generalization and robustness of the 
proposed model are demonstrated from the perspective of global and sub-regions. Our proposed model yielded 
the best Area Under Curve (AUC) value of 0.8813, which is about 3%, 4% and 8% higher than that obtained by 
three traditional methods, respectively. An annual scale landslide susceptibility changes analysis method is also 
presented with an accuracy rate of 93.33%. The dynamic response relationship between landslide susceptibility 
and conditioning factors is revealed.   

1. Introduction 

The Sichuan-Tibet transportation corridor – part of China’s inte-
grated transport system – is one of the prime considerations of the Great 
Western Development Strategy (GWDS), mainly because of its role in 
promoting transportation, tourism, and economic and social develop-
ment along its entire course (Guo et al., 2017; Peng et al., 2020). The 
transportation corridor has an average altitude of 3800 m, and passes 
through areas with dramatically fluctuating topography, complex ge-
ology and strong tectonic movement (Peng et al., 2020). The trans-
portation corridor is frequently affected by geological hazards, of which 
landslides are the most common and pose the greatest threat to the 
transportation project and people’s lives in the region (Guo et al., 2017). 
Therefore, landslide susceptibility mapping (LSM) is of great signifi-
cance for risk assessment and disaster reduction. 

LSM involves a comprehensive analysis of various factors, including 

geological environmental factors, historical landslides and the landslide 
physical laws of an area, to determine the probability of future landslide 
events in that area (Li et al., 2017b; Reichenbach et al., 2018). LSM is 
largely divided into two methods, viz. qualitative and quantitative 
methods. Qualitative methods rely mainly on expert experience, such as 
the expert system scoring method and the analytic hierarchy process 
(AHP, Bathrellos et al., 2017; Lyu et al., 2018; Nefeslioglu et al., 2013). 
Quantitative methods mainly include the deterministic methods based 
on physical models, the data-driven methods based on statistical models 
(Kritikos and Davies, 2014; Li et al., 2017b; Zhang et al., 2020) and the 
machine learning methods (Di Napoli et al., 2020; Fang et al., 2020; 
Karakas et al., 2022; Kocaman et al., 2020; Sun et al., 2021; Yu et al., 
2019). The common machine learning methods include logistic regres-
sion (LR, Aditian et al., 2018; Goyes-Peñafiel and Hernandez-Rojas, 
2021), random forest (RF, Rabby et al., 2020; Sun et al., 2020), sup-
port vector machine (SVM, Pradhan, 2013; Xu et al., 2012), artificial 
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neural network (ANN, Ermini et al., 2005; Lee et al., 2020; Zeng and 
Chen, 2021), and others. 

In recent years, deep learning technology has seen significant 
application in the fields of image classification (Krizhevsky et al., 2017), 
change detection (Hou et al., 2021) and landslide detection (Can et al., 
2019; Ji et al., 2020; Mohan et al., 2021). The method can deal with non- 
linear problems well, and some scholars apply it to landslide suscepti-
bility mapping. Wang et al. (2019) first constructed the Convolutional 
Neural Network (CNN) models for LSM, which automatically learned 
complicated non-linear mapping from conditioning factors to ground 
truth through a series of convolutional layers. Yang et al. (2021) pro-
posed a hybrid model based on CNN, which applied two-dimensional 
CNN to extract landslide spatial information and one-dimensional 
CNN to obtain the correlation characteristics between the conditioning 
factors. Wang et al. (2020) proposed a sequential data representation 
method to explore the prediction potential of Recurrent Neural Network 
(RNN). The authors reported three RNN models (long short-term 
memory (LSTM), gated recurrent unit (GRU) and simple recurrent unit 
(SRU)) for landslide susceptibility evaluation. Wang et al. (2021) pro-
posed an integrated method of stacking CNN and RNN for LSM. CNN was 
used to extract effective deep features and RNN model was adopted to 
make use of the sequence information of the data. The integrated 
method achieved a better performance than an individual CNN or LSTM. 
Wei et al. (2022) developed an attention-constrained neural network 
with overall cognition (OC-ACNN) for susceptibility prediction. The 
overall cognition based on frequency ratio was introduced as the priori 
information on the hidden layer to yield the effect of attention. 

Actually, the occurrence of landslides is affected by both topographic 
conditions and triggering conditions. In comparision with topographic 
conditions, triggering conditions have time attributes and always 
change with time. Therefore, landslide susceptibility also correspond-
ingly dynamically changes (Torizin et al., 2018). Rainfall is one of the 
main triggering factors of landslides (Jones et al., 2021) and many 
studies focus on the dynamic changes of susceptibility under dynamic 
rainfall conditions. Caine (1980) first proposed a relationship between 
rainfall intensity and duration for landslide prediction. Pradhan et al. 
(2018) used a risk matrix to evaluate the joint probability of landslides 
and triggering rainfall threshold which can be applied to areas with 
incomplete data or non-recurrent landslide events. At the same time, 
some scholars also discussed the change of landslide susceptibility under 
integrated dynamic factors. Hua et al. (2020) comprehensively studied 
the dynamic changes of landslide susceptibility under the factors of 
rainfall, reservoir water level, and land use change in the Three Gorges 
Reservoir Area in 2002, 2007 and 2017. Li et al. (2020) adopted two 
dynamic factors, namely rainfall and human activities, to study the 
dynamic changes of landslide susceptibility in the Three Gorges Reser-
voir Area in 2010, 2015 and 2019. Torizin et al. (2018) studied the 
landslide susceptibility changes in Lanzhou in 2000, 2012 and 2016, and 
used dynamic factors such as DEM and land use. Due to the coverage of 
the study area, characteristics of topography and data availability in this 
research, two dynamic change factors, namely rainfall and NDVI, were 
selected for research. 

Although many issues have been discovered, two of them remain 
unsolved in deep learning-based LSM: (1) Most of the deep learning 
methods are successfully applied to moderate study areas, such as cities 
or counties, with homogeneous geological conditions. However, the 
performance of the deep learning models needs to be further discussed 
for study areas with complex geological conditions and wide range. (2) 
The occurrence of landslides is affected by various conditioning factors, 
which have different contributions to landslide occurrence. How to take 
full advantage of the interdependence between the conditioning factors 
to improve the performance of LSM needs to be further discussed. 

The main contributions of this study can be summarized as follows. 
First, a Convolutional-Squeeze and Excitation-Long short term memory 
network (Conv-SE-LSTM) model was proposed for LSM. The proposed 
model adaptively optimized the weights of conditioning factor to 

enhance the contributing features, and took full advantage of the factor 
dependence to improve the efficiency. Secondly, the Sichuan-Tibet 
transportation corridor with complex geological conditions and wide 
coverage was selected as the study area. The study area was divided into 
several sub-regions according to the water systems, the geological con-
ditions, the mechanism of landslides and the number of landslides. The 
robustness and generalization of four deep learning models were 
compared at different scales in terms of accuracy, precision, recall, F- 
measure, receiver operating characteristic (ROC) and area under curve 
(AUC). Finally, an annual scale landslide susceptibility changes analysis 
method was presented. The Conv-SE-LSTM was employed to predict the 
susceptibility index under different annual cumulative rainfall (ACR) 
and normalized difference vegetation index (NDVI) conditions. The 
dynamic response relationship between landslide susceptibility and 
dynamic factors was revealed. 

2. Study area and data 

2.1. Description of the study area 

The Sichuan-Tibet transportation corridor commences in Chengdu, 
Sichuan Province. Before terminating in Lhasa, it passes through Ya’an, 
Kangding, Changdu, Bomê and Linzhi. The rail route has a total length of 
1543 km and crosses seven rivers, namely the Minjiang River, the Dadu 
River, the Ya-lung River, the Jinsha River, the Lancang River, the Sal-
ween River and the Brahmaputra River. It passes through eight moun-
tains, including the Longmen Mountains, the Hengduan Mountains, the 
Nyainqentanglha Mountains, the Gangdise Mountains and the Hima-
layas (Peng et al., 2020). The study area covers 1332.5 km of the 
Sichuan-Tibet transportation corridor from east to west and a width of 
427 km from south to north, the area totaling 57 × 104 km2 (see Fig. 1). 
It covers the most complex geological, topographical and geomorphic 
areas in the world (Guo et al., 2017). The average annual temperature 
and rainfall levels decrease from east to west with increased altitude. 
The faults in the area are well developed and the lithology mainly 
comprises granite, sandstone, limestone and loose deposits. 

A total of 1669 landslides were identified in this study, of which 
1590 landslides had only location information and were used for spatial 
scale analysis of LSM, while 79 landslide events contained occurrence 
time information from 2010 to 2018, and were used to verify the ac-
curacy of dynamic change of landslide susceptibility. The 1590 landslide 
points were obtained from historical landslide records, interpretation of 
Google Earth images and Interferometric Synthetic Aperture Rader 
(InSAR) technology, and confirmed through field investigation and by 
the railway department (China Railway Eryuan Engineering Group Co. 
ltd). These landslides were identified based on the deformation and 
morphological information of landslide hazards, which can be divided 
into three categories (Li et al., 2022): (1) 850 (53.46 %) areas with 
obvious deformation signs and characteristics are currently undergoing 
deformation, which are called actively deforming slopes. (2) 179 land-
slides (11.26 %) that have occurred and are still deformed are called 
reactivated historically deformed slopes. (3) 561 landslides (35.28 %) 
that have occurred and are currently in a stable state are called stabilized 
historically deformed slopes. The 79 landslide events were selected from 
the Global Landslide Catalog (GLC) which are available free of charge 
from the National Aeronautics and Space Administration (NASA, htt 
ps://gpm.nasa.gov/landslides, (Pradhan, 2013; Xu et al., 2012). 
“Landslides_SL” was used to represent the first-mentioned 1590 land-
slides and “Landslides_NASA” represented the second-mentioned 79 
landslide events. The landslide inventory map of the study area is shown 
in Fig. 1. 

2.2. Landslide conditioning factors 

The occurrence of landslides is affected by several factors such as 
topography, geology, hydrological, land cover and human activity. 
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Based on the geological conditions of the study area and previous studies 
(Li et al., 2017a), 15 conditioning factors were selected for LSM; 13 were 
static factors (altitude, slope, aspect, curvature, plan curvature, profile 
curvature, relief amplitude, surface roughness, topographic wetness 
index (TWI), lithology, distance to roads, distance to rivers and distance 
to faults) and two were dynamic factors (NDVI and ACR). In mapping 
spatial susceptibility, the two dynamic factors were replaced using 
multi-year average cumulative rainfall (MYACR) and NDVI-mean. The 
data sources of these factors are listed in Table 1 and the thematic maps 
are shown in Fig. 2. All the landslide conditioning factors were con-
verted into a raster form with a grid size of 30 × 30 m. 

Fig. 3 shows the average ACR (i.e., the mean of annual cumulative 
rainfall in a certain year in the study area) and the number of Land-
slides_NASA from 2010 to 2018. The landslide events in the study area 
have been recorded only up to 2018. The largest number of landslide 
events occurred in 2011 which was 20, followed by 2010, 2012, 2016 
and 2018. The average ACR was the lowest in 2011. According to the 
largest number of landslide events and the largest change in the average 

ACR, the five-year timespan from 2011 to 2016 was finally selected to 
analyze the change in the susceptibility index. 

3. Methodology 

In the present work, the influence of different factors on the LSTM 
model was studied using Landslides_SL. Thereafter, based on the optimal 
input sequence, SVM, CNN, LSTM and Conv-SE-LSTM models were used 
to evaluate landslide susceptibility along the Sichuan-Tibet trans-
portation corridor. To analyze the dynamic change in landslide sus-
ceptibility on a yearly scale, the susceptibility maps for 2011 and 2016 
were generated using the proposed optimal model and the results were 
evaluated using Landslides_NASA. ArcGIS was the operating software 
and Python was used for programming. The SVM was implemented 
using Scikit-learn (https://scikit-learn.org/stable) and CNN, LSTM and 
Conv-SE-LSTM were implemented in Python under the PaddlePaddle2.0 
framework (https://www.paddlepaddle.org.cn). A detailed flowchart is 
shown in Fig. 4. 

3.1. Sub-region division Strategy 

The Sichuan-Tibet transportation corridor crosses different types of 
geological and geomorphic regions with complex geological conditions. 
In order to evaluate the robustness and generalization of various models, 
referring to Cui and Zou (2021), the study area was divided into five sub- 
regions – namely the Minjiang-Dadu River Basin, the Ya-lung River 
Basin, the Jinsha River Basin, the Salween-Lancang River Basin and the 
Brahmaputra River Basin (Table 2) – based on the number of water 
systems, geomorphic units, the disaster mechanism of landslides and the 
number of landslides in the study area. 

The Minjiang-Dadu River Basin lies in the transition zone between 
the Sichuan Basin and the Qinghai-Tibet Plateau. This region sustains 
abundant rainfall and possesses various geomorphic features, such as 
plains, hills, mountains and valleys. The lithology features mainly sandy 
conglomerate, granite and diorite, located at the intersection of the 
Xianshuihe, Longmenshan and Anninghe faults, and the exogenic 

Fig. 1. Landslide inventory mapping along the Sichuan-Tibet transportation corridor. “Landslides_SL” was used to represent the first-mentioned 1590 landslides and 
“Landslides_NASA” represented the second-mentioned 79 landslide events. 

Table 1 
Datasets used in this study.  

Data Source Data Source 
Landsat8 OLI 

imagery 
https://www.gscloud.cn Slope 30 m SRTM 

DEM 
30 m SRTM DEM https://gdex.cr.usgs. 

gov/gdex/ 
Aspect 30 m SRTM 

DEM 
Lithology https://geocloud.cgs. 

gov.cn 
Curvature 30 m SRTM 

DEM 
Roads https://www.webmap. 

cn 
Plan curvature 30 m SRTM 

DEM 
Faults https://geocloud.cgs. 

gov.cn 
Profile 
curvature 

30 m SRTM 
DEM 

Rivers https://www.webmap. 
cn 

Surface 
roughness 

30 m SRTM 
DEM 

ACR https://gpm.nasa.gov/ Relief 
amplitude 

30 m SRTM 
DEM 

NDVI Landsat8 OLI imagery TWI 30 m SRTM 
DEM  
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geological process is weak (Cui and Zou, 2021). The Ya-lung River Basin 
has a relatively open terrain with a lithology of mainly sandy slate and 
metamorphic rock. This region has been affected by the Xianshuihe fault 
zone with strong fault activity and weak exogenic geological processes, 
such as weathering and erosion (Guo et al., 2015). The Jinsha River 
Basin is dominated by alpine canyon landform, having large ground 

fluctuations, serious river undercutting erosion and dense landslide 
distribution. The geological structure is mainly controlled by the Jinsha 
River fault zone, and the exogenic geological process is strong (Peng 
et al., 2020). The Salween-Lancang River Basin is located in the Heng-
duan Mountains and the canyon area in the southeast Tibet. The for-
mation lithology is complex and composed of sandstone and phyllite. 

Fig. 2. Landslide conditioning factors along the 
Sichuan-Tibet transportation corridor: (a) altitude; (b) 
slope; (c) aspect; (d) curvature; (e) plan curvature; (f) 
profile curvature; (g) relief amplitude; (h) surface 
roughness; (i) TWI; (j) NDVI-mean; (k) MYACR; (l) 
lithology (A-I indicate soft mudstone, mudstone with 
limestone and gneiss; loose deposits and glacial de-
posits; soft and hard alternating carbonate and clastic 
rocks; hard slate and quartz sandstone; hard diabase, 
olivine and volcanic rocks; soft and hard alternating 
limestone and marlstone; hard diorite and syenite and 
basalt; hard granite, andesite and dolomite; soft and 
hard alternating metamorphic sandstone, marlite and 
phyllite, respectively); (m) distance to roads; (n) dis-
tance to rivers; (o) distance to faults; (p) ACR_2011; 
(q) ACR_2016; (r) NDVI_2011; and (s) NDVI_2016.   
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This area is mainly affected by the Lancang River and Salween River 
fault zones. The faults are active and the exogenic geological process is 
strong (Cui and Zou, 2021). The Brahmaputra River Basin is dominated 
by high mountains, deep valleys and river valleys, while the lithology is 
mainly slate and sandstone. The main fault zone is the Brahmaputra 
River fault zone with weak fault activity and weak exogenic geological 
processes (Wu et al., 2020). 

3.2. Construction of a spatial database 

The construction of the landslide datasets is a vital task in LSM. The 
occurrence of the landslides depends upon the environmental conditions 
around the landslides. With reference to the work of Regmi et al., 
(2013), Wang et al. (2021) and Huang et al. (2022), the 120 m circular 

buffer zone for the landslide points were constructed, and take the 
minimum external rectangle of the buffer zone as the sample range. 
Furthermore, we also created non-landslide datasets using the above- 
mentioned method. The non-landslide points were randomly selected 
from a range at least 1 km away from all of the landslide points. In this 
study, Landslides_SL were used to construct the landslide datasets, and 
the number of landslides used in each region is shown in Table 3. To 
improve the accuracy and convergence speed of the model, it is neces-
sary to normalize each conditioning factor layer data to 0 – 1, and the 
landslide dataset was marked as 1 and the non-landslide dataset as 0. 

Notes: ① Global; ② Minjiang-Dadu River Basin; ③ Ya-lung River 
Basin; ④ Jinsha River Basin; ⑤Salween-Lancang River Basin; and ⑥ 
Brahmaputra River Basin. 

Fig. 3. Average ACR and the number of Landslides_NASA from 2010 to 2018.  

Fig. 4. Flowchart of the present study.  
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3.3. Evaluation of the conditioning factors 

Feature selection is very important for LSM. Redundancy factors will 
lead to low performance and time-consuming of the model. In this paper, 
Pearson correlation coefficient (PCC) and Information gain ratio (IGR) 
were used for feature selection. 

If correlation between the landslide conditioning factors is high, it 
will not only cause data redundancy and reduce the execution efficiency 
of the model, but will also affect the reliability of the prediction accu-
racy. The PCC (Chen et al., 2018; Yao et al., 2020) is a statistical 
parameter which can quantitatively measure the correlation between 
two variables. When the absolute value of correlation coefficient is 
greater than or equal to 0.5, there is a strong correlation between the 
variables, which should be eliminated from the study (Qi et al., 2021; 
Tien Bui et al., 2016). 

To improve the efficiency and accuracy of LSM and reduce the in-
fluence of the non-effective factors, the IGR method was used to select 
the factors that contribute to the occurrence of landslides (Dash and Liu, 

1997). The higher the IGR value, the greater the influence of that factor 
on the occurrence of landslides. If the IGR value is equal to 0, the con-
ditioning factor has no influence on the occurrence of landslides and 
should be eliminated from the prediction process (Yu et al., 2019). 

3.4. Models 

3.4.1. SVM 
The support vector machine (SVM) is a binary classification model 

whose purpose is to draw a line to “best” distinguish two types of points 
on the plane (Awad and Khanna, 2015). The process of the classification 
of landslides and non-landslides using conditioning factor layers is 
actually a nonlinear classification process. The SVM introduces a kernel 
function to map the landslide conditioning factors to higher-dimensional 
feature spaces. Furthermore, for sample classification, the SVM allows 
the identification of an optimal hyperplane of the maximum distance 
between the landslide and non-landslide points from the feature space 
(Fang et al., 2020; Pradhan, 2013). Xu et al. (2012) discussed the in-
fluence of different kernel functions of SVM on LSM. Their results 
showed that the radial basis kernel function (RBF) used in SVM offered 
the best prediction performance. Therefore, this paper has chosen RBF as 
the kernel function with which to construct the SVM model. 

The SVM model based on RBF kernel function has two parameters: 
gamma and C. The parameter gamma defines the influence size of a single 
training sample and implicitly determines the distribution of the data 
after mapping to the new feature space. Parameter C is the penalty co-
efficient, which is used to balance the “maximum margin” and the 
“number of wrong samples”. The selection of gamma and C will have an 
impact on the performance of the model. 

3.4.2. CNN 
Convolutional neural networking (CNN) is a deep learning algorithm 

with the characteristics of local connectivity and shared weights 
(Sameen et al., 2020; Yang et al., 2021). The structure of a typical CNN 
comprises an input layer, convolutional layer, pooling layer, fully con-
nected layer and output layer. In a typical convolution operation: first, 
one or several convolutional layers are used to convolute an image; then, 
a series of feature maps are down-sampled; finally, these down-sampled 
feature maps are mapped to the sample labeled space through the fully 
connected layer. The purpose of the convolution operation is to extract 
different features from the input layer. The process of down-sampling 
these feature maps is known as pooling. The most common pooling 
methods are maximum pooling and average pooling (Fang et al., 2020). 
Maximum pooling takes the maximum value of the features in a single 
pooling area, and average pooling takes the average value of the features 
in a single pooling area. A fully connected layer is used to classify the 
feature maps and output classification results (Yi et al., 2020). 

The CNN model constructed in the study is shown in Fig. 5. The input 
layer comprised c data channels of size n × n. The hidden layer consisted 
of two convolution layers (conv1 and conv2) and two maximum pooling 
layers (pool1 and pool2). The number of convolution kernels in conv1 
and conv2 were 64 and 132, respectively. Furthermore, the sizes of the 
convolution kernel and the pooling layer were 3 × 3 and 2 × 2, 
respectively. Also, a 0 element was used to fill in the convolution to 
ensure that the feature space retained its size after convolution. A 
dropout layer was added after each pooling layer to prevent over-fitting 
and achieve a regularisation effect to a certain extent. fc is the full 
connection layer. The final output layer output two neurons through the 
softmax activation functions, 0 and 1, where 0 represents non-landslide 
and 1 represents landslide. 

3.4.3. LSTM 
A long short-term memory network (LSTM) is a special structure of 

recurrent neural networking (RNN) used to solve the problem of long- 
term dependence information. LSTM was first proposed by Hochreiter 
and Schmidhuber, (1997), and then improved by Graves, (2012). LSTM 

Table 2 
Basic information on the sub-regions.  

Sub-regions Main lithology Climatic 
conditions 

Main fault zone Exogenic 
geological 
process 

Minjiang- 
Dadu River 
Basin 

Sandy 
conglomerate, 
granite and 
diorite 

Warm and 
humid 
subtropical 
Pacific 
southeast 
monsoon 
climate, 
subtropical 
mountain 
monsoon 
climate 

Intersection of 
Xianshuihe, 
Longmenshan 
and Anninghe 
faults, 
influence of 
fault activity is 
slight 

Weak 

Ya-lung River 
Basin 

Sandy slate 
and 
metamorphic 
rock 

Plateau 
monsoon 
climate, 
climate 
changes 
with height 

Xianshuihe 
fault zone 

Weak 

Jinsha River 
Basin 

Granite, 
syenite and 
diorite 

Plateau 
monsoon 
climate, 
climate 
changes 
with height 

Jinsha River 
fault zone 

Strong 

Salween- 
Lancang 
River Basin 

Sandstone and 
phyllite 

In dry and 
hot valley 
and arid 
areas, the 
vertical 
climate 
change is 
obvious 

Lancang River 
and Salween 
River fault 
zones 

Strong 

Brahmaputra 
River Basin 

Slate and 
sandstone 

Combined 
action of 
multiple 
climatic 
conditions 

Brahmaputra 
River fault 
zone 

Weak  

Table 3 
Number of landslides in each region.  

Zone Number of 
landslides 

Number of training 
samples 

Number of testing 
samples 

① 1590 1113 477 
② 479 335 144 
③ 154 107 47 
④ 361 252 109 
⑤ 323 226 97 
⑥ 273 191 82  
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takes the output of the previous layer as the input of the next layer 
(Mutlu et al., 2019). Therefore, it uses the previous historical informa-
tion and the adjacent historical information for model training, and 
shows good performance in dealing with sequence problems. Different 
factor input sequences will affect the performance of the LSTM model. 
The impact of different sequence inputs on the LSTM model is discussed 
in Section 4.2, and the optimal input sequence suitable for LSM is given. 
Each LSTM cell has four layers, namely-three sigmoid layers and a tanh 

layer. The transfer of information is controlled by three gates (Shi et al., 
2015): ① the forget gate: this contains a sigmoid layer, which is used to 
determine how much information is forgotten with respect to the input 
(xt) at time t and hidden output (ht−1) at the previous time; ② the input 
gate: this contains a sigmoid layer and a tanh layer and is used to control 
how much information of candidate internal states (Ct−1) is reserved 
according to the input (xt) at time t and hidden output (ht−1) at the 
previous time; and ③ the output gate: this contains a sigmoid layer, 

Fig. 5. CNN model structure.  

Fig. 6. LSTM model structure.  
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which is used to determine the output value of the hidden output (ht) 
and the candidate internal state (Ct) at time t. 

The LSTM structure is shown in Fig. 6. First, c data channels of size n 
× n were sorted into a certain sequence. Each factor layer is thus a two- 
dimensional matrix with size c × (n × n). Each column represents a 
different factor layer data. Each row represents a level of factor layer 
data. The top factors in the sequence were introduced first to the model, 
whereas the bottom factors in the sequence were input last. The final 
output layer output two neurons through softmax activation functions, 
0 and 1, where 0 is non-landslide and 1 is landslide. 

3.4.4. Proposed Conv-SE-LSTM 
The proposed Convolutional-Squeeze and Excitation-long short term 

memory network (Conv-SE-LSTM) model consists of convolution mod-
ule, SE attention module and LSTM module. Firstly, the model extracts 
useful deep features from multi-channel factor images through convo-
lution module. Then, the SE attention module adaptively obtains the 
importance of each extracted feature channel. The features with 
different weights are input into the LSTM module with an optimal 
sequence. Finally, the probability of landslide in evaluation unit could 
be obtained by classification layer. 

The SE attention module starts with a squeeze operation. Global 
average pooling was used to compress each two-dimensional feature 
channel into a real number in the spatial dimension. The output 
dimension is consistent with the input feature channel number. In the 
exception operation, two fully connected layers were used to adaptively 
generate weights for each feature channel. Next, the obtained weights 
were weighted to the previous features through scale operation to 
recalibrate the original features in the channel dimension. It is note-
worthy that the higher the correlation between the channel and key 
information, the greater the weight becomes. The learned weight was 
then assigned to the original feature graph to enhance those features 
useful to the current task and suppress those features that were less 
useful (Hou et al., 2021; Hu et al., 2020). 

The proposed Conv-SE-LSTM model can solve the problem of long- 
term dependence so that most of the critical information about the 
occurrence of a landslide is retained and transferred to the next hidden 

state to assist in judgment. At the same time, it also can adaptively 
obtain the importance of each feature channel through learning, 
emphasize effective information, suppress invalid information, and 
improve network performance. 

The Conv-SE-LSTM model framework is shown in Fig. 7. First, c 
factor layers of size n × n were sorted into a certain sequence. Then, a 
group convolution with three convolution kernels was used for each 
factor layer. The size of the convolution kernel was 3 × 3 and the step 
size was 2 so that three (floor(n

2) + 1)× (floor(n
2)+1) feature maps could 

be obtained. The feature maps were then stacked into the characteristic 
graph of size (3 × c)×(floor(n

2) + 1)× (floor(n
2) + 1), which became (3 ×

c) × 1 × 1 after squeeze. The exception operation was used to adaptively 
calculate the weight, whereas the scale operation was conducted to 
weight the obtained weight to the previous features and further obtain a 
(3 × c)×(floor(n

2) + 1)× (floor(n
2)+1) size weighted characteristic graph. 

The c channels were reshaped to one dimensional vectors of size 3×
(floor(n

2) + 1)× (floor(n
2) + 1). They were stacked into a matrix of size c 

× (3×(floor(n
2) + 1)× (floor(n

2) + 1)) images in a certain sequence. These 
matrices were input into the LSTM network model line by line. The final 
output layer output two neurons through softmax activation function, 
0 and 1, where 0 is non-landslide and 1 is landslide. 

3.5. Model evaluation and Comparison 

Accuracy, precision, recall, F-measure, receiver operating charac-
teristic (ROC) and area under curve (AUC) were used to evaluate the 
prediction ability of the model. LSM is equivalent to a two-classification 
problem, where the output results are only landslide and non-landslide. 

Fig. 7. Conv-SE-LSTM model structure.  

Table 4 
The confusion matrix.  

Classification Predicted results Actual results 
True positive (TP) landslide landslide 
False positive (FP) landslide non-landslide 
True negative (TN) non-landslide non-landslide 
False negative (FN) non-landslide landslide  
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Table 4 shows the confusion matrix was constructed according to 
different combinations of real value and predicted value. If both the 
actual and predicted results are landslide, it is a true positive (TP); if 
both the actual and predicted results are non-landslide, it is a true 
negative (TN); if the predicted result is non-landslide but the actual 
result is landslide, it is a false negative (FN); and if the predicted result is 
landslide but the actual result is non-landslide, it is a false positive (FP). 

Accuracy (Acc), precision, recall, F-measure (Fang et al., 2020; Ji 
et al., 2020) are calculated as follows: 

Acc =
TN + TP

TN + TP + FP + FN
(1)  

Precision =
TP

TP + FP
(2)  

Recall =
TP

TP + FN
(3)  

F −measure =
2 × P × R

P + R
=

2 × TP

2 × TP + FP + FN
(4) 

ROC curve and AUC have been widely used in the performance 
evaluation of landslide susceptibility models (Al-Najjar and Pradhan, 
2021; Dao et al., 2020; Rabby et al., 2020). In the ROC curve (Hanley 
and McNeil, 1982), the false positive rate (FPR) is the x-axis, and the 

Fig. 8. Pearson correlation coefficient matrixes: (a) Global; (b) Minjiang-Dadu River Basin; (c) Ya-lung River Basin; (d) Jinsha River Basin; (e) Salween-Lancang 
River Basin; and (f) Brahmaputra River Basin. 
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true positive rate (TPR) is the y-axis. At the same time, the area under 
ROC (AUC) was used to quantitatively evaluate the prediction accuracy 
of the methods. The AUC value range is [0,1]. The larger the AUC value, 
the higher the accuracy of the model classification and the better the 
accuracy. 

FPR =
FP

FP + TN
(5)  

TPR =
TP

FN + TP
(6)  

4. Results 

The landslide susceptibility mapping of the areas along the Sichuan- 
Tibet transportation corridor was carried out from the perspectives of 
global and sub-regions to verify the performance of our proposed Conv- 
SE-LSTM model. The steps applied to verify the performance involved: 
(1) selecting landslide conditioning factors to improve the performance 
of the model; (2) fully mining the optimal factor input sequence for 
LSTM model; (3) spatial analysis of LSM; and (4) calculating ACC, pre-
cision, recall, F–measure, AUC value and ROC curve to evaluate the 
performance of the model. Finally, LSM with dynamic factor changes 
under the optimal model was achieved. 

4.1. Selection of landslide conditioning factors 

The calculation results of PCC and IGR values of landslide condi-
tioning factors along the Sichuan-Tibet transportation corridor are 
shown in Figs. 8 and 9, respectively. Fig. 8(a) shows the correlation 
between altitude and MYACR is slightly higher than 0.5. This is because 
most areas along the Sichuan-Tibet transportation corridor are moun-
tainous areas. The rainfall increases with the increase of altitude from 
the foot of the mountain. After reaching a certain height, the rainfall 
decreases with the increase of altitude. At the same time, the correlation 
coefficient between slope and surface roughness is much higher than 
0.5, because the greater the slope, the more severe the soil erosion. And 
the more complex the surface morphology, the greater roughness and 
relief amplitude of the surface. Fig. 9 dark green line shows the IGR 
calculation results in the global research of the Sichuan-Tibet trans-
portation corridor. It can be seen that the IGR value of the MYACR is 
higher than the altitude, and the IGR value of the slope is higher than the 
relief amplitude and surface roughness. Therefore, the three condition-
ing factors of altitude, relief amplitude and surface roughness were 
removed according to the principle of higher correlation and less 
importance between factors and the remaining 12 were applied to the 

global research of the Sichuan-Tibet transportation corridor. Similarly, 
in the case of the Minjiang-Dadu River Basin, altitude, relief amplitude 
and surface roughness were removed, and the remaining 12 factors were 
used for the study. For the Ya-lung River Basin, Jinsha River Basin and 
Salween-Lancang River Basin, relief amplitude and surface roughness 
were removed, and the remaining 13 factors were utilized. Finally, in 
the case of the Brahmaputra River Basin, altitude, distance to roads and 
relief amplitude were not considered and the remaining 12 factors were 
used. 

A comprehensive analysis of the calculation results revealed that, for 
all the zones, the correlation coefficients between relief amplitude and 
surface roughness, relief amplitude and slope were very high. The IGR of 
MYACR was the largest value in all regions in the study area and was 
significantly higher than all other factors. By contrast, the IGR values of 
relief amplitude and curvature were lower than the other factors, indi-
cating that these two factors have little impact on the occurrence of 
landslides. The factors removed for different sub-regions were different, 
and the contribution values of each factor to the occurrence of landslides 
in different sub-regions were also different. This showed that the sub- 
regions were different to each other and demonstrated a necessity for 
zone mapping. 

4.2. Comparisons of different factor input sequences based on LSTM 
model under global evaluation 

The LSTM model can fully mine the sequence information between 
the factors, with the most critical information contributing to landslides 
occurrence being retained and passing to the next hidden state. Wang 
et al. (2020) proposed a sequential data representation method of 
landslide conditioning factors in which the factors are sorted in 
descending order of importance, calculated by the information gain 
ratio method. However, they did not compare the performance of this 
input sequence with other input sequences. The present paper discusses 
the effects of three different sequence representations on the perfor-
mance of the LSTM model. The three sequence representations are: ① 
sorted in descending order of importance calculated by the information 
gain ratio method; ② sorted in increasing order of importance calcu-
lated by the information gain ratio method; and ③ sorted in random 
order based on topography, geology, rainfall and human activity. 

According to the IGR results calculated in Section 4.1, the above 
three sequence inputs are shown in Table 5. Three different sequences 
were input into the LSTM model and tuned to obtain optimal results. 
Table 5 shows the optimal AUC results of the three different sequence 
representations. The results showed that the AUC value of the first input 
factor sequence was the highest, indicating that the input factor 

Fig. 9. Information gain ratio results.  
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sequence is more suitable for the LSTM model and can improve the 
performance of the model. The first input factor was followed sequen-
tially by the third and then the second input factors. The optimal 
sequence data input first introduces the relatively important factors into 
the LSTM structure and is retained, and then passes them to the next 
hidden state to continue to affect the judgment of the model. The least 
important factors are finally introduced into the model, so as to obtain 
more accurate LSM results. 

4.3. Generation of landslide susceptibility maps 

In this subsection, the four methods introduced in Section 3.4 are 
used for landslide susceptibility analysis. All the model parameters are 
optimized by trial-and-error method, the selected groups of parameters 
are trained and the optimal result is selected. For CNN, LSTM and Conv- 
SE-LSTM, the middle layer activation function uses ‘ReLU’. ‘ReLU’ 

activation function is one of the most commonly used and effective 
activation functions. It has two main advantages: (1) it overcomes the 
problem of gradient disappearance, (2) compared with other activation 
functions, it is more effective for training prediction methods (Wang 
et al., 2021; Wang et al., 2019). The optimizer uses ‘Adam’, the input 
layer c is the number of conditioning factors selected, n = 8. The 
parameter settings of the different models are shown in Table 6. 

The trained model was used to predict the evaluation units, and a 
susceptibility index for each evaluation unit was obtained to produce the 
LSM. The susceptibility indexes predicted by SVM, CNN, LSTM and 
Conv-SE-LSTM were all between 0 and 1. The larger the susceptibility 
index, the more likely the landslide is to occur in the area; otherwise, a 
landslide is less likely to occur. 

4.3.1. Global landslide susceptibility mapping 
The generated susceptibility map was reclassified using the natural 

break method into five grades: very low, low, moderate, high and very 
high. Fig. 10 shows the landslide susceptibility maps along the Sichuan- 
Tibet transportation corridor obtained by SVM, CNN, LSTM and Conv- 
SE-LSTM. 

The landslide frequency ratio (Yu et al., 2019) is the ratio between 
the number of landslide points falling into a certain susceptibility grade 
in a certain area and the proportion of the grade area within the total 
area, and can be used to measure the accuracy of LSM. The landslide 
frequency ratio was calculated for each class of the susceptibility map, as 
shown in Fig. 11. 

Fig. 10 shows that the very high susceptibility areas along the 
Sichuan-Tibet transportation corridor are mainly concentrated on both 
sides of the Ya-lung River, the Jinsha River, the Lancang River, the 
Salween River and the Brahmaputra River, and on both sides of the 
roads near Chengdu. It can be seen that the total of high and very high 
susceptibility areas predicted by the SVM model exceeded that predicted 
by the other models. The prediction results of CNN, LSTM and Conv-SE- 
LSTM models were very similar. In excess of half of the study area was 
marked as very low and low susceptibility areas, and most of the land-
slides were located in high and very high susceptibility areas. Few 
landslides were located in very low susceptibility areas, which is in line 

with the actual situation. 
Fig. 11 shows that, with increased landslide susceptibility grade, the 

landslide frequency ratio also increases, and the frequency ratio in very 
high susceptibility areas is much higher than that in very low suscepti-
bility areas. At the same time, the difference in frequency ratio between 
different classes of the susceptibility map predicted by the Conv-SE- 
LSTM was the largest, followed by the LSTM model, while the differ-
ence predicted by the SVM was the smallest. This shows that the 

Table 5 
Sequential data representation results based on three methods.  

Method Input sequential data AUC 
① Rainfall, profile curvature, plan curvature, NDVI, TWI, 

distance to rivers, distance to faults, aspect, distance to roads, 
lithology, slope, curvature  

0.8484 

② Curvature, slope, lithology, distance to roads, aspect, distance 
to faults, distance to rivers, TWI, NDVI, plan curvature, profile 
curvature, rainfall  

0.8399 

③ Slope, aspect, curvature, profile curvature, plan curvature, 
TWI, lithology, distance to faults, rainfall, distance to rivers, 
distance to roads, NDVI  

0.8448  

Table 6 
Model parameter settings along the Sichuan-Tibet transportation corridor.  

Zone Models Parameter settings 
① SVM Kernel Function: 

RBF 
C: 1 gamma: 0.005 

CNN dropout-1: 0.5 
Epoch: 769 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size: 64  

m: 350 
Buffer size: 650 

LSTM Epoch: 492 
Learn rate: 0.0001 

Batch size: 32 
m: 200 

Buffer size: 650 

Conv-SE- 
LSTM 

Epoch: 1499 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 500 

② SVM Kernel Function: 
RBF 

C: 5 gamma: 0.005 

CNN dropout-1: 0.5 
Epoch: 471 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size: 32  

m: 350 
Buffer size: 
1000 

LSTM Epoch: 633 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 800 

Conv-SE- 
LSTM 

Epoch: 1041 
Learn rate: 0.0001 

Batch size: 32 
m: 200 

Buffer size: 500 

③ SVM Kernel Function: 
RBF 

C: 1 gamma: 0.01 

CNN dropout-1: 0.5 
Epoch: 967 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size: 64  

m: 350 
Buffer size: 800 

LSTM Epoch: 582 
Learn rate: 0.0001 

Batch size: 32 
m: 200 

Buffer size: 500 

Conv-SE- 
LSTM 

Epoch: 1998 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 750 

④ SVM Kernel Function: 
RBF 

C: 0.5 gamma: 0.02 

CNN dropout-1: 0.5 
Epoch: 368 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size:32  

m: 350 
Buffer size: 500 

LSTM Epoch: 494 
Learn rate: 0.0001 

Batch size: 32 
m: 200 

Buffer size: 
1000 

Conv-SE- 
LSTM 

Epoch: 979 
Learn rate: 0.0001 

Batch size: 32 
m: 200 

Buffer size: 900 

⑤ SVM Kernel Function: 
RBF 

C:2 gamma: 0.005 

CNN dropout-1: 0.5 
Epoch: 1199 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size: 64  

m: 350 
Buffer size: 
1000 

LSTM Epoch: 893 
Learn rate: 0.0001 

Batch size:64 
m: 200 

Buffer size: 700 

Conv-SE- 
LSTM 

Epoch: 1985 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 700 

⑥ SVM Kernel Function: 
RBF 

C: 1 gamma: 0.001 

CNN dropout-1: 0.5 
Epoch: 352 
Learn rate: 0.0001 

dropout-2: 
0.5 
Batch size: 64  

m: 350 
Buffer size: 800 

LSTM Epoch: 726 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 700 

Conv-SE- 
LSTM 

Epoch:524 
Learn rate: 0.0001 

Batch size: 64 
m: 200 

Buffer size: 750 

Notes: ① Global; ② Minjiang-Dadu River Basin; ③ Ya-lung River Basin; ④ 
Jinsha River Basin; ⑤ Salween-Lancang River Basin; and ⑥ Brahmaputra River 
Basin. 
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Fig. 10. Landslide susceptibility maps obtained from four models along the Sichuan-Tibet transportation corridor: (a) SVM; (b) CNN; (c) LSTM; and (d) Conv- 
SE-LSTM. 

W. Huang et al.                                                                                                                                                                                                                                 



Catena 222 (2023) 106866

13

predicted results of the Conv-SE-LSTM model have greater discrimina-
tion. In other words, the proposed model offers enhanced prediction. 

4.3.2. Sub-region landslide susceptibility mapping 
The 20 trained sub-regional models were used to predict the corre-

sponding sub-regions. Using the natural break method, the LSM was 
divided into five grades, namely very low, low, moderate, high and very 
high (Fig. 12). It can be seen that most of the landslide points are located 
in high and very high susceptibility areas, and the prediction results of 
different models in the same sub-region are similar. Compared with the 
global predicted results, the distribution of very high susceptibility areas 
is roughly the same. With the exception of the Brahmaputra River Basin, 
the prediction results for the zones show good continuity. At the same 
time, the proportion of low and very low susceptibility areas obtained by 
way of zoning increase significantly, and the distribution of high sus-
ceptibility areas becomes more concentrated. In the upper reaches of the 
Salween River, the susceptibility index of zoning prediction is lower 
than that of the global prediction. In the Brahmaputra River Basin, there 
are few sample points and a large zoning area; therefore, the high and 
medium susceptibility areas predicted by zoning increase significantly, 
and continuity at the junction with the Salween-Lancang River Basin is 
poor. 

To make the results comparable, the sub-region prediction results 
and the corresponding global prediction results were divided into five 
grades in accordance with the equidistant classification method, and the 
landslide frequency ratio in the five grades was counted (see Fig. 13). It 
is observed that in the Minjiang-Dadu River Basin and the Jinsha River 
Basin, the landslide frequency ratio from each model for each sub-region 
is largely identical. In the case of the Ya-lung River Basin, with the 
exception of SVM, the landslide frequency ratio from the models for each 
sub-region is largely identical. For the Salween-Lancang and Brahma-
putra River Basins, the landslide frequency ratios from each model for 
each sub-region are quite different. However, in each basin, the land-
slide frequency ratio positively correlates with the landslide suscepti-
bility grade. The higher the susceptibility grade, the greater the 
landslide frequency ratio. This indicates that the zoning prediction re-
sults have certain reliability. 

4.4. Validation and comparisons of models 

In Table 7, ① lists the ACC, precision, recall, F-measure values and 
AUC values of the SVM, CNN, LSTM and Conv-SE-LSTM models along 
the Sichuan-Tibet transportation corridor. Fig. 14(a) plots the ROC 
curves using the testing dataset. Conv-SE-LSTM has the highest ACC 
value (0.8040) and F-measure value (0.8025). This is followed by LSTM, 
CNN and SVM. SVM has the lowest ACC and F-measure values. Also, 

Conv–SE-LSTM displays a higher AUC value than the other three models, 
indicating that Conv-SE-LSTM offers the best predictive performance. 
The AUC of the Conv–SE–LSTM model is approximately 3 %, 4 % and 8 
% higher than that of the CNN model, LSTM model and SVM model, 
respectively. The SVM model displays the most inferior predictive 
performance. 

In order to make the results comparable, the trained global model 
and sub-region models were used to predict the testing datasets for each 
sub-region, and the ACC, precision, recall, F-measure and AUC values 
were calculated, as shown in Table 7. The ROC curve is shown in Fig. 14. 
It can be seen that, for each sub-region, the AUC value of the optimal 
model was higher than 80 %, indicating that the final prediction result of 
the model is highly reliable. 

For the Minjiang-Dadu River Basin, the Jinsha River Basin and the 
Salween-Lancang River Basin, the AUC value of the proposed Conv-SE- 
LSTM model was slightly higher than that of the other three models. For 
the Ya-lung River Basin and the Brahmaputra River Basin, the AUC value 
of the CNN model was slightly higher than that of the other three 
models. However, the difference in the AUC values between the CNN 
and Conv–SE–LSTM models was only around 1 %, implying no signifi-
cant difference between the model performance. For the SVM model, the 
sub-region prediction results were slightly better than the global pre-
diction results. Conversely, the global prediction results of other models 
were slightly better than the sub-region prediction results. 

4.5. LSM under different dynamic factors 

The trained global Conv-SE-LSTM model was used to generate 
landslide susceptibility maps for 2011 and 2016 in the study area. 
Fig. 15 shows these maps and the locations of landslide points in the 
corresponding years. It can be seen that the susceptibility map for 
different years also changes with changes in rainfall and NDVI; the 
susceptibility index of most regions shows no significant change, and the 
regions with large changes are mainly concentrated in the Salween River 
Basin and the Chengdu-Kangding section. In the natural break method, a 
susceptibility index greater than 0.555 in 2011 was considered to depict 
high and very high susceptible areas, and in 2016 a susceptibility index 
greater than 0.543 was considered to depict high and very high sus-
ceptible areas. Such predictions are considered to be correct, and 
monitoring should be strengthened. Fig. 16 shows the susceptibility 
index corresponding to landslide points in 2011 and 2016. It can be seen 
that 19 of the 20 landslides in 2011 and 11 of the 12 landslides in 2016 
were predicted accurately, with approximately 93.33 % accuracy. These 
results show that the method proposed in this paper, which uses the deep 
learning model to generate a susceptibility map for different ACR and 
NDVI values, has certain reliability. 

Fig. 11. Landslide frequency ratio of each susceptibility class obtained from four models along the Sichuan-Tibet transportation corridor.  

W. Huang et al.                                                                                                                                                                                                                                 



Catena 222 (2023) 106866

14

Fig. 12. Landslide susceptibility maps in sub-regions obtained from four models along the Sichuan-Tibet transportation corridor: (a) SVM; (b) CNN; (c) LSTM; and 
(d) Conv-SE-LSTM. 
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Fig. 13. Statistical results of the proportion of landslides in each susceptibility classification: (a) Minjiang-Dadu River Basin; (b) Ya-lung River Basin; (c) Jinsha River 
Basin; (d) Salween-Lancang River Basin; and (e) Brahmaputra River Basin. Notes: (1) SVM-sub-regions; (2) SVM-global; (3) CNN-sub-regions; (4) CNN-global; (5) 
LSTM-sub-regions; (6) LSTM-global; (7) Conv-SE-LSTM-sub-regions; and (8) Conv-SE-LSTM-global. 

Table 7 
Performance of the four models along the Sichuan-Tibet transportation corridor.  

Zone Models Sub-region prediction results Global prediction results 
ACC Precision Recall F-measure AUC ACC Precision Recall F-measure AUC 

① SVM / / / / /  0.7275  0.7157  0.7547  0.7347  0.8033 
CNN / / / / /  0.7537  0.7440  0.7736  0.7585  0.8381 
LSTM / / / / /  0.7589  0.7906  0.7044  0.7450  0.8484 
Conv-SE-LSTM / / / / /  0.8040  0.8085  0.7966  0.8025  0.8813 

② SVM 0.7431 0.7273 0.7778 0.7517 0.7963  0.7083  0.6471  0.9167  0.7586  0.7821 
CNN 0.7639 0.7375 0.8194 0.7763 0.8499  0.8160  0.7433  0.9653  0.8399  0.8992 
LSTM 0.7569 0.7569 0.7569 0.7569 0.8359  0.7882  0.7456  0.8750  0.8051  0.8504 
Conv-SE-LSTM 0.7674 0.7619 0.7778 0.7698 0.8371  0.8125  0.7473  0.9444  0.8344  0.8707 

③ SVM 0.7447 0.7805 0.6809 0.7273 0.8352  0.6809  0.6491  0.7872  0.7115  0.8176 
CNN 0.9149 0.9333 0.8936 0.9130 0.9461  0.8830  0.8333  0.9574  0.8911  0.9715 
LSTM 0.8511 0.8667 0.8298 0.8478 0.9181  0.8404  0.8636  0.8085  0.8352  0.9208 
Conv-SE-LSTM 0.8936 0.9302 0.8511 0.8889 0.9579  0.8617  0.8400  0.8936  0.8660  0.9457 

④ SVM 0.7294 0.7315 0.7248 0.7281 0.8209  0.6284  0.5972  0.7890  0.6798  0.7775 
CNN 0.7661 0.7458 0.8073 0.7753 0.8681  0.8440  0.8049  0.9083  0.8534  0.9156 
LSTM 0.7706 0.7921 0.7339 0.7619 0.8285  0.7890  0.8058  0.7615  0.7830  0.8615 
Conv-SE-LSTM 0.7982 0.8095 0.7798 0.7944 0.8755  0.8119  0.8208  0.7982  0.8093  0.8849 

⑤ SVM 0.7629 0.7802 0.7320 0.7553 0.8444  0.7010  0.7600  0.5876  0.6628  0.7642 
CNN 0.8351 0.8155 0.8660 0.8400 0.9039  0.8814  0.9022  0.8557  0.8783  0.9463 
LSTM 0.7732 0.8118 0.7113 0.7582 0.8652  0.7629  0.8400  0.6495  0.7326  0.8943 
Conv-SE-LSTM 0.8196 0.7768 0.8969 0.8325 0.8971  0.8144  0.8280  0.7938  0.8105  0.8965 

⑥ SVM 0.6707 0.6296 0.8293 0.7158 0.7827  0.7317  0.7714  0.6585  0.7105  0.8125 
CNN 0.7195 0.6800 0.8293 0.7473 0.8175  0.8720  0.8861  0.8537  0.8696  0.9304 
LSTM 0.7256 0.7033 0.7805 0.7399 0.8236  0.8171  0.8939  0.7195  0.7973  0.9210 
Conv-SE-LSTM 0.7561 0.7442 0.7805 0.7619 0.8294  0.8049  0.8906  0.6951  0.7808  0.9155 

Notes: ① Global; ② Minjiang-Dadu River Basin; ③ Ya-lung River Basin; ④ Jinsha River Basin; ⑤ Salween-Lancang River Basin; and ⑥ Brahmaputra River Basin. 
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5. Discussion 

The geological environment along the Sichuan-Tibet transportation 
corridor is complex and landslides, along with other geological disasters, 
can occur easily (Cui et al., 2022). The occurrence of landslides is a very 
complicated process and controlled by several factors. LSM is of great 
significance for landslides prevention. In the present paper, the influ-
ence of the input sequences of different factor layers on the LSTM model 
is discussed, and a Conv-SE-LSTM model is also proposed based on the 

optimal sequence and applied to the LSM along the Sichuan-Tibet 
transportation corridor. Furthermore, the results of the model are 
compared with the traditional deep learning methods from global and 
sub-region perspectives. The results show that the model performance of 
the proposed method is far superior to that of the existing methods. In 
addition, the optimal Conv-SE-LSTM model was used to analyze changes 
in LSM under the influence of different dynamic factors in 2011 and 
2016. What follows are the in-depth analysis of the robustness of the 
proposed model and the relationship between the change in landslide 

Fig. 14. ROC curves: (a) Global; (b) Minjiang-Dadu River Basin; (c) Ya-lung River Basin; (d) Jinsha River Basin; (e) Salween-Lancang River Basin; and (f) Brah-
maputra River Basin. 
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susceptibility index and the dynamic factors. 

5.1. How robust is the proposed Model? 

Compared with the deep learning model, SVM model has shorter 
training time (Huang et al., 2022a), but its prediction performance was 
found to be the least reliable. CNN and LSTM are the two others 
commonly used deep learning algorithms (Wang et al., 2019; Wang 
et al., 2020). CNN can extract deep information from images, whereas 
LSTM can make full use of sequence information. Good results have been 
achieved using the above two methods in the study area. However, the 
performance of CNN is better than LSTM, which is consistent with the 
research conclusion of Thi Ngo et al. (2020). For LSM, the importance of 
different channels for the occurrence of landslides is different (Huang 
et al., 2022b), and the Conv–LSTM model considers that each channel of 
the feature map is equally important in the process of convolution and 
pooling (Wang et al., 2021). By introducing the SE attention module to 
construct the Conv-SE-LSTM model, the influence of applying different 
channels on model accuracy is solved. By processing the convoluted 
feature map, the SE module first obtains a one-dimensional vector of the 

same size as the number of channels, which is used as the weight of each 
channel. Then, the weight is applied to the corresponding channels to 
obtain the results. The experimental results show the AUC of the Conv- 
SE-LSTM model to be approximately 3 %, 4 % and 8 % higher than that 
obtained by three traditional methods, respectively. Since the Conv-SE- 
LSTM model displays a higher AUC value than the other three models, 
this implies that the proposed Conv-SE-LSTM has the best predictive 
performance. The SE module is easy to integrate, and only one module 
was added on the original basis, greatly improving the classification 
effect (Hu et al., 2020). 

Using machine learning or deep learning to carry out landslide sus-
ceptibility assessment is essentially a binary classification problem, and 
the susceptibility index is the probability that the unit is divided into 
landslide. The higher the accuracy of the model, the closer the suscep-
tibility index of landslide points is to 1, and the closer the susceptibility 
of non-landslide points is to 0, which leads to the relatively conservative 
of very high and high susceptibility areas in the LSMs. Compared with 
the LSM along the Sichuan-Tibet transportation corridor and its adjacent 
area using an improved frequency ratio method obtained by Li et al. 
(2017a), the distribution of very high and high susceptibility areas is 
relatively similar. They are distributed along the linear features such as 
water systems and roads in the study area and are mainly concentrated 
in several areas along the Dadu river, Jinsha river, Lancang river and 
Brahmaputra river. At the same time, the research results of Cui and Zou 
(2021) show that the sections with moderate susceptibility or above 
account for 70.43 % of the total length of the corridor, the high-risk 
sections account for 48.62 % of the total length of the corridor, and 
the risk-free sections account for 7.11 % of the total length of the 
corridor. Consistent with the previous classification criteria, the corre-
sponding results in this research are 78.87 %, 48.63 % and 5.09 %, 
which are basically consistent. In addition, different from the traditional 
methods based on statistical models, the landslide susceptibility index 
obtained by machine learning or deep learning is always between 0 and 

Fig. 15. Variation of the landslide susceptibility index under different NDVI and rainfall conditions: (a) 2011; and (b) 2016.  

Fig. 16. Susceptibility index of landslide points predicted for 2011 and 2016.  
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1 in any region, and the relative susceptibility of different regions cannot 
be reflected. 

Previous studies rarely discussed the robustness of the model, section 
4.4 presents the performance of the four models from different angles 
and different sub-regions. Fig. 17 shows the AUC values of different 
models for each sub-region from the global and sub-regions perspec-
tives. The dark broken lines represent the results obtained from the 
global perspective and the light broken lines represent the results ob-
tained from the sub-region perspective. It can be seen that the AUC 
values of the SVM model and LSTM model are relatively low, whereas 
the AUC values of the Conv-SE-LSTM and CNN models are higher. The 
average of the absolute difference values of the AUC of the SVM, CNN, 
LSTM and Conv-SE-LSTM models for each sub-region are 0.037, 0.056, 
0.035 and 0.028, respectively. This demonstrates that the Conv-SE- 
LSTM model offers the greatest stability. Overall, the CNN model dis-
plays good performance but poor stability, the SVM and LSTM models 
show good stability but poor model performance, and the proposed 
Conv-SE-LSTM model offers the best stability and good robustness on 
the basis of the accuracy of LSM. 

Comparing the Minjiang-Dadu River Basin, with its simple geological 
conditions and landslide disaster mechanism, with the Brahmaputra 
River basin, with its large area, few landslide points, complex geological 
conditions and simple sample information, there is a little difference in 
the AUC values and robustness of several of the deep learning models in 
terms of zoning and global prediction. The complex geological condi-
tions and landslide disaster mechanisms in place for the Ya-lung River 

Basin, the Jinsha River Basin and the Salween-Lancang River Basin 
resulted in complex information within selected samples, low discrimi-
nation ability, poor feature extraction ability and poor model perfor-
mance in the SVM model. The CNN and LSTM models were greatly 
affected by the number of samples and poor model stability. The pro-
posed Conv-SE-LSTM model not only extracted the deep features of the 
samples fully, but also fully mined the information related to landslides 
occurrence. In this paper, the newly proposed model was systematically 
and detailly described from the perspectives of model construction, 
model training, model accuracy evaluation, statistical analysis of sus-
ceptibility results, and discussion of model robustness. The proposed 
Conv-SE-LSTM model was more stable in complex areas and large-range 
scenarios, and showed good prediction results. As a new deep learning 
model, it fully considers the conditions of each channel of input data for 
landslide susceptibility assessment, gives adaptive weights and makes 
full use of the sequence information between factors. From the 
perspective of model construction, it is more suitable for LSM work. 
However, there still need some improvement in how to improve the 
interpretability of the model and the relative degree of susceptibility 
between different regions. I hope to discuss and solve this problem with 
more scholars in the future. 

5.2. How does landslide susceptibility change with changes in various 
conditioning Factors? 

The deep learning model largely depends on the landslide training 

Fig. 17. Comparison of the robustness of different models: (a) SVM; (b) CNN; (c) LSTM; (d) Conv-SE-LSTM. Note: ② Minjiang-Dadu River Basin; ③ Ya-lung River 
Basin; ④ Jinsha River Basin; ⑤ Salween-Lancang River Basin; and ⑥ Brahmaputra River Basin. 
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samples. Fig. 18 summarizes the relationships between the landslides 
and each conditioning factor. The occurrence of landslides is affected by 
many factors. The statistical analysis of landslide distribution law in the 
present study area plays an important role in the selection of condi-
tioning factors and the occurrence of landslides in the study area (Chen 
et al., 2022; Wu et al., 2020). Fig. 18 shows that, in the study area, al-
titudes in the range 4500 m-4900 m are highly prone to landslides. 
Landslides in the study area are mainly concentrated near slopes of 25◦

and 34◦. Slopes that are too high or too low are not prone to landslides, 
and the aspect has no obvious distribution characteristics. The landslides 
are mostly distributed in the northeast, east and southwest. Also, cur-
vatures that are too high or too low do not promote geological disasters, 
and the landslides are mostly concentrated within the curvature value 
–0.02–0.02, the plan curvature value 9–20, and the profile curvature 
value 4–12. The distribution of faults, rivers, roads and landslides fol-
lows a distribution law: the closer their distance, the greater the chance 
of landslide occurrence. Hard slate and quartz sandstone, hard granite, 
andesite and dolomite, soft and hard alternating metamorphic 

sandstone, marlite and phyllite promote the highest number of land-
slides. The landslides occur in areas with a surface roughness of 1–1.5, a 
relief amplitude of 15–60, a TWI value of 3.5–7. and in areas with 
rainfall of 477–780 mm/y, with a peak of 962 mm/y. 

Among the conditioning factors selected in the research, rainfall and 
NDVI vary greatly with time, and have a greater impact on landslide 
occurrence. Therefore, it is significant to discuss the dynamic response 
relationship between dynamic factors (rainfall and NDVI) and landslide 
susceptibility (Hua et al., 2020). The annual scale landslide suscepti-
bility prediction method based on deep learning proposed in the present 
paper is suitable for situations where fewer landslide data with accurate 
occurrence timing. Although the timescale in this study is yearly, the 
applicability of the model is more extensive, which provides new scope 
for the in-depth study of changes in susceptibility with time. The sus-
ceptibility maps of the study area for 2011 and 2016 obtained by the 
Conv-SE-LSTM model were verified by the Landslides_NASA, and the 
accuracy obtained for this method was 93.33 %. 

Fig. 19(a) shows the variation of the landslide susceptibility index 

Fig. 18. Relationship between landslides and conditioning factors.  

W. Huang et al.                                                                                                                                                                                                                                 



Catena 222 (2023) 106866

20

(LSI) with dynamic factors NDVI and ACR. First, the LSI change diagram, 
ACR change diagram and NDVI change diagram from 2011 to 2016 were 
calculated. Then, in accordance with the calculation method in Fig. 19 
(b), the variation diagram of LSI with ACR and the variation diagram of 
LSI with NDVI were obtained. Finally, the common variation diagram of 
LSI with ACR and NDVI was obtained by the calculation method in 
Fig. 19(c). “PP” and “PN” represent the areas where the change in LSI 
positively related to rainfall. In these areas, rainfall erodes the slope 
surface, destroys the surface integrity of the rock and soil mass, reduces 
the shear strength of the rock and soil mass and, thus, increases the 
possibility of landslides (Li et al. 2017a; Ye et al., 2021). “PN” and “NN” 

indicate the areas where the change in LSI is negatively correlated with 
the NDVI value. The smaller the NDVI value, the lower the vegetation 
coverage, more unstable the water and soil conservation, and lower the 
shear strength of the slope (Wei et al., 2022; Guo et al., 2015). This 
increases the possibility of landslides occurrence. The white area in-
dicates no change or little change (<0.01) in the susceptibility index 
between the two years. 

The variation results of LSI with the dynamic factors NDVI and ACR 
were statistical and the results are shown in Fig. 19(d). According to the 
statistical results, the proportion of regions with a positive correlation 
between LSI change and rainfall or a negative correlation with NDVI 
value was 84.36 %, indicating that the LSI change in most of the regions 
is consistent with the actual situation. The annual scale change analysis 
method of landslide susceptibility based on deep learning proposed in 
this paper has certain reliability. From the statistical results, the positive 
correlation between the LSI change and rainfall accounted for only 
around 41 %, which was mainly concentrated in the Minjiang-Dadu 
River Basin and the Brahmaputra River Basin. This indicates a strong 
relationship between the occurrence of landslides and the dynamic 
response of rainfall in these two sub-regions. The negative correlation 
between the LSI change and NDVI accounted for about 42 %, and was 
mainly concentrated in the Ya-lung River Basin, the Jinsha River Basin 
and the Salween-Lancang River Basin, indicating that the occurrence of 
landslides has a strong relationship with the dynamic response of NDVI 
and is less affected by rainfall. In some areas (white, about 0.08 %), the 

LSI index in 2011 was very high (close to 1) or very low (close to 0). 
Furthermore, for 2016, although the ACR increased or NDVI decreased, 
the LSI value remained unchanged or changed only slightly. This can be 
related to the “softmax” activation function used by the deep learning 
method in the final classification layer. After the extracted effective 
features passed through the softmax layer, the landslide probability 
value between 0 and 1 was obtained. Therefore, for all practical appli-
cations, it is necessary to pay attention not only to the areas where the 
LSI index increase, but also to the high and very high susceptibility areas 
after prediction. 

The occurrence of landslides is affected by many factors. In the 
landslide susceptibility dynamic assessment for a wide range, only 
rainfall and NDVI are considered according to the availability and 
accessibility of data. In future work, we will further optimize and adjust 
to explore the dynamic response relationship between other factors 
(such as human engineering activities) and landslide occurrence. 

6. Conclusions 

In the present study, the effects of input sequences of different factor 
layers on the accuracy of the LSTM model were compared. It was proved 
that the input factor sequence based on decreasing IGR values can make 
full use of the sequence information of the factors and show better 
performance. Secondly, a Conv-SE-LSTM model was proposed which 
introduced the SE attention mechanism into the deep learning method 
and mapped landslide susceptibility along the Sichuan-Tibet trans-
portation corridor. It was found that the AUC of the proposed Conv-SE- 
LSTM model was approximately 3 %, 4 % and 8 % higher than that of the 
CNN model, LSTM model and SVM model, respectively. This verified 
that the Conv-SE-LSTM algorithms exhibited excellent performance and 
capability in assessing landslide susceptibility along the Sichuan-Tibet 
transportation corridor in China. 

According to different geological environments, the study area was 
divided into five sub-regions, and the landslide susceptibility evaluation 
was carried out within those sub-regions. The results showed that global 
prediction was more accurately forecast by the CNN, LSTM and Conv- 

Fig. 19. The change analysis in LSI from 2011 to 2016: (a) variation of LSI with dynamic factors NDVI and ACR; (b) calculation method of the variation diagram of 
LSI with ACR or NDVI; (c) calculation method of the common variation diagram of LSI with ACR and NDVI and (d) statistical analysis of the common variation 
diagram of LSI with ACR and NDVI. P represents a positive correlation; N represents a negative correlation. 
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SE-LSTM models, whereas sub-region prediction was better forecast by 
the SVM model. The performance of the proposed Conv-SE-LSTM model 
was less affected by the environment and sample size than the other 
models, and offered stronger feature extraction ability and greater 
robustness. Finally, based on the optimal Conv–SE-LSTM model under 
MYACR and NDVI-mean conditions, the landslide susceptibility maps of 
the study area for 2011 and 2016 were obtained. The actual occurrence 
time of the landslides were used for verification, and the results obtained 
through this method matched with the reality with an accuracy rate of 
93.33 %. The statistical analysis of susceptibility changes from 2011 to 
2016 show the method proposed in this paper based on deep learning on 
an annual scale to offer certain reliability. 
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