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ABSTRACT
Owing to the vast development of Synthetic Aperture Radar (SAR), especially the improvement of 
spatio-temporal resolution, observing and quantifying the complex and dynamic flood process 
becomes increasingly feasible. Utilizing the Sentinel-1 Ground Range Detected (GRD) dataset, we 
proposed an improved probabilistic flood mapping method combining image Pareto Scaling (PS) 
normalization and Bayesian probability estimation. We validated our method during a flood event 
in Xinjiang County, Shaanxi Province of China in October 2021 using a high spatial resolution (0.1  
m) Unmanned Aerial Vehicle (UAV) image. The overall reliability of the new method agrees 95% to 
the UAV measurements and achieves the highest accuracy (85.2%) when compared to the 
Sentinel-1 dual-polarized water index (SDWI) threshold method and the Z-score method. Our 
results distinguished four flood stages: flood emergence, peak, receding, and disappearance, 
which provide valuable insights into the dynamic change process of floods. Notably, we observed 
that pixels with different flood probabilities exhibited distinct temporal characteristics. The extre
mely high probability pixel experienced rapid fluctuations, while the medium probability pixel 
showed more gradual changes over time. We believe our proposed method can enhance our 
understanding of flood-prone areas and their dynamics so that decision-makers can develop 
targeted mitigation measures and response plans.
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1. Introduction

Global warming has intensified the frequency of 
floods in recent years, making them one of the most 
widely distributed and damaging natural disasters in 
the world (Yang, Criss, Stein, and Nelson 2022; H. Yang 
et al. 2021; Zhang et al. 2023). Satellite observations 
show that the world's population was affected by 
floods reached 86 million between 2000 and 2015, 
and climate change projections for 2030 indicate that 
the proportion of people affected by floods will 
further increase (Tellman et al. 2021). For example, in 
2021, the average precipitation of China was 6% 
higher than usual. More than 10 devastating floods 
occurred and over 59 million people were affected, 
causing over 150 thousand house collapses, dama
ging at least 4.76 million hm2 of crops, and resulting 
in direct economic losses of ~246 billion yuan 
(Bulletin 2022). In the southern Baluchistan and 
Sindh, Pakistan, flood, some 33 million people 

became homeless and more than 1,200 people were 
killed, causing economic losses estimated to exceed 
US$10 billion (Mallapaty 2022). Such severe conse
quences indicate our poor flood preparedness and 
slow response capabilities, thus calling for timely 
flood monitoring observations and accurate quantita
tive risk assessment measures.

Traditional flood monitoring methods rely on man
ual samplings so that they have the disadvantages of 
limited coverages, extensive labor, and time cost and 
become increasingly difficult to meet the current 
flood response and rescue requirements. Therefore, 
researchers have alternatively sought for satellite 
remote sensing observations which have wide cov
erages and unprecedented spatial resolution 
(Klemenjak et al. 2012; Palmer, Kutser, and Hunter  
2015). The key to flood mapping using remote sen
sing images is the extraction of water body pixels by 
distinguishing the spectral or amplitude information 
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reflected by the water body (Silveira and Heleno  
2009). For example, Tulbure et al. (2022) combined 
Landsat-8 and Sentinel-2 observations and demon
strated that the increased temporal frequency could 
improve the ability to detect surface water and flood 
extents. However, since most flood periods are 
accompanied by clouds, optical images which rely 
on a clear sky may become impossible to observe 
the flood process. This suggests that the Synthetic 
Aperture Radar (SAR) data may be more suitable for 
flood mapping because of its all-time, all-weather 
availability (Danklmayer et al. 2009). Oberstadler, 
Honsch, and Huth (1997) first tried using ERS-1 SAR 
data to map the Rhine valley 1993–1994 flood and 
achieved a high degree of accuracy. Since then, SAR 
data have been widely used for flood mapping world
wide, especially after the launch of Sentinel-1A in 
2014 (e.g. Amitrano et al. 2018; Bauer-Marschallinger 
et al. 2022; McCormack, Campanya, and Naughton  
2022; Wang, Jin, and Xiong 2023).

The basis for flood monitoring using SAR data is 
that signals reflected by the flood water have a low 
backscatter coefficient on a SAR image compared to 
the surrounding non-water textures (Schumann and 
Moller 2015). There are two types of flood mapping 
methods based on SAR images. The first type is to use 
a single post-flood image and a previously estab
lished background water body distribution to inter
pret the inundation change. Flood information is 
typically extracted according to different classification 
algorithms such as those based on backscatter inten
sity values (Chini et al. 2017), image textures 
(Dasgupta et al. 2018), and region growth image seg
mentation (Liang and Liu 2020; Silveira and Heleno  
2009). However, the performance of these methods 
may be impeded under complex environments. A key 
reason is the uncertainty in cell classification 
(Giustarini et al. 2015), i.e. non-flooded pixels (e.g. 
vegetated areas (Grimaldi et al. 2020) and wet snow 
(Pulvirenti et al. 2014)) that have similar scattering 
characteristics with water may be misclassified into 
flooded water. It should be noted that wet snow 
absorbs the impinging signal and exhibits backscatter 
values similar to the ones associated with water 
(McCormack, Campanya, and Naughton 2022; Zhao 
et al. 2021), hindering the detection of flooded areas. 
This will pose challenges in high altitude areas (e.g. 
the Tibetan Plateau) but could be largely avoided in 
most flood-prone or coastal cities as most floods 

occur in the summer. Therefore, it is difficult to deter
mine whether the inundation change is caused by 
actual flood water changes or due to classification 
errors.

The second method type directly obtains the inun
dation change by differencing two or more images 
before, during and/or after the flood (Schlaffer et al.  
2015), which is superior to the first method type in 
masking out permanent water or water-like pixels 
(Twele et al. 2016). The selection of background refer
ence image before the flood is crucial for this method 
and is closely related to the quality of the final flood 
mapping results (Hostache, Matgen, and Wagner  
2012; Li et al. 2018). Considerations for selecting the 
reference image include choosing an image with the 
same imaging mode, polarization, and incidence 
angles. The key is to select a reference image with 
similar imaging parameters to the flood image to 
ensure consistency in backscatter characteristics and 
minimize the effects of temporal changes and noise. 
O’Grady, Leblanc, and Gillieson (2011) simply used the 
latest image before the flood whilst Ban and Yousif 
(2012) used the images from the past few years in the 
same season with the flood period. Reliance on 
a single reference image can result in errors if the 
backscatter characteristics of the reference image 
have changed significantly over time or if they are 
not representative of the non-flooded period. Besides, 
it may be difficult to select appropriate reference 
images from the same season with the flood period, 
especially in regions with limited satellite coverage or 
where image quality is being affected by complex 
atmospheric conditions. To overcome these draw
backs, this paper employs the Pareto Scaling (PS) 
normalization criteria which were first used for che
mometrics (Varmuza and Filzmoser 2016), metabolo
mics (Worley and Powers 2013) and bioinformatics (M. 
Guo et al. 2015). The PS normalization represents the 
background reference images before the flood based 
on the mean and the square root of the standard 
deviation of amplitude measurements. This helps to 
account for the differences in backscatter character
istics between images so that it minimizes the effects 
of temporal changes and noise.

On the other hand, although the change detection 
method is good at removing fixed targets such as 
asphalt and permanent water, there are still areas 
with seasonal backscatter variations (e.g. vegetation 
or water level changes) which could be incorrectly 
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classified as flood water (Vreugdenhil et al. 2018). 
Furthermore, the backscatter coefficient can be influ
enced by heavy precipitation and strong winds 
(Pierdicca, Pulvirenti, and Chini 2013) and if the 
weather conditions significantly differ before and 
after the flood event. These variations may be incor
rectly interpreted as the occurrence or regression of 
floods. To account for these uncertainties, we intro
duced the Bayesian probability estimation (Lin et al.  
2019) which represents a pixel of being flooded as 
a probability value, rather than a deterministic class. 
Bayesian probability can combine empirical knowl
edge, expert opinions, and existing data to better 
deal with uncertainties (Gelman et al. 1995) and multi
ple hypotheses (Kruschke and Liddell 2018). It was 
first utilized in the above mentioned first type of 
flood mapping method based on a single image, 
and here we will modify it to include multiple images 
with different amplitude values.

In this paper, we proposed a new method of flood 
mapping method combining PS normalization and 
Bayesian estimation based on intensity changes by 
image differencing. The Sentinel-1 Ground Range 
Detected (GRD) dataset was used to generate 
a series of flood probability maps during the 
October 2021 Xinjiang County flood in Shaanxi 
Province of China and validated by high resolution 
aerial images. Our results uncover the dynamic nature 
of the flood process and its temporal evolution 

characteristics. The proposed method thus offers 
valuable tools that enhance people’s comprehension 
and preparedness of the potential hazards associated 
with floods.

2. Study area and data

2.1. Study area

The study area is located in Xinjiang County, 
Yuncheng City, Shaanxi Province of China (111°1′E ~  
111°20′E, 35°27′N ~ 35°49′N) as shown in Figure 1, 
with a total area of 597 km2. It belongs to the tempe
rate continental climate and has less undulating topo
graphy. From the 10 m spatial resolution land use/ 
cover data obtained from ESRI (Environmental 
Systems Research Institute), the main local land use 
types are cultivated land (croplands) adjacent to the 
water system and residential construction land (built- 
up area) on both sides of the original water system.

With a total length of 713 km and a basin area of 
39,721 km2, the Fen River is the second-largest tribu
tary of the Yellow River and the largest river in 
Shaanxi Province of China. We focused our research 
on a 1-in-30-year flood event that took place in the 
Autumn 2021 along the Fen River and led to large- 
scale floods in Xinjiang County. The flood started at 
about 17:00 on October 7 affected by heavy rainfall 
and upstream water, and the embankment in the 

Figure 1. Overview of the study area. (a) 1 m spatial resolution optical image from google earth with major villages in Xinjiang County, 
Shaanxi Province of China. (b) 12.5 m spatial resolution DEM from ALOS. (c) 10 m spatial resolution land use/cover from ESRI land 
cover.
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northern section of the Fen River broke with a length 
of nearly 20 m. About 20,000 people were urgently 
evacuated.

2.2. Data

We used 88 Sentinel-1 GRD images (Table 1) to study 
the dynamic process of the flood. A total of 84 images 
from 1 January 2020 to 30 September 2021 were used 
to generate a reference background before the flood 
and the other four images, sampled at different stages 
during the flood process, were used to detect any 
changes caused by the flood. As shown in Figure 2, 
the flooded areas exhibited as dark pixels with very 
low backscatter coefficient, and we can clearly see 
that the most serious flood-spreads occurred on or 
near 12 October 2021.

A 0.1 m spatial resolution Digital Orthophoto Map 
(DOM) imaged by Unmanned Aerial Vehicle (UAV) 
(Figure 3) was acquired in the morning of 
12 October 2021 during the flood, the same date 
with one of the Sentinel-1 GRD images as shown in 
Table 1. This UAV image was then used for validation. 
We used the Agisoft Photoscan software to process 
the UAV DOM by adding and aligning photos, build
ing dense clouds, meshing, and matching (Liu et al.  
2018).

3. Methods

3.1. Sentinel-1 GRD data processing

Due to its wide coverage and high spatial resolution, 
processing SAR image time series is generally time- 
consuming, which hinders their applications in rapid 

Table 1. Sentinel-1 GRD data.
Flood stage Acquisition No. of images Mode Orbit direction Polarization Spatial resolution

Non-flood 1 January 2020 to  
30 September 2021

84 IW ascending VV 10 × 10m

Emergence 5 October 2021 1 IW ascending VV 10 × 10m
Peak 12 October 2021 1 IW ascending VV 10 × 10m
Receding 17 October 2021 1 IW ascending VV 10 × 10m
Disappearance 24 October 2021 1 IW ascending VV 10 × 10m

Figure 2. Sentinel-1 GRD images of the flood process. (a) 2021-10-05. (b) 2021-10-12. (c) 2021-10-17. (d) 2021-10-24. Dark color 
represents low backscatter coefficients whilst bright color represents high backscatter coefficients. The white box in (b) is used in 
Figure 7.
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flood responses. To solve this, the Google Earth 
Engine (GEE) platform published by Google was 
used. GEE supports the development of global-scale 
data products using satellite image time series by 
online programming (Gorelick et al. 2017). This avoids 
the time-consuming process of data downloading 
and preprocessing. The GEE cloud platform has 
a complete and constantly updated Sentinel-1 GRD 
dataset which provides a great opportunity for wide- 
area, dynamic, and long-term flood monitoring 
research (DeVries et al. 2020; Tamiminia et al. 2020).

The Sentinel-1 SAR dataset released by GEE 
includes Sentinel-1 GRD data collected in extra wide- 
swath (EW), interferometric wide-swatch (IW), and 
strip map (SM) modes, which are preprocessed using 
tools provided by the ESA Sentinel Application 
Platform (SNAP) software package. In our experiment, 
the IW GRD image was used. The GEE platform first 
applied the orbital file to control the geometric accu
racy within 5 cm (Prats-Iraola et al. 2015). Second, the 
thermal noise of all GRD images collected after 
12 January 2018 was removed, which was mainly 
related to the edge of the image band (Ali et al.  
2018). Radiometric calibration was carried out to pro
duce a unitless backscatter intensity (σint) (Sabel et al.  
2012). Terrain geocoding was used to encode images 
using SRTM DEM (Farr et al. 2007). Finally, according 
to Equation 1, the backscatter intensity was converted 
to the backscatter coefficient (σ0) measured in deci
bels (dB) (Lin et al. 2019). All images were projected to 
the WGS84 system. 

3.2. Pareto scaling normalization

As a first step in deriving a probabilistic flood map, PS 
normalization is used to acquire the flood anomaly 
information so that a reference background for the 
non-flood period can be established.

First, we calculated the multi-temporal mean (μx
nf ) 

and standard deviation (sx
nf ) for each pixel of the 84 

images before the flood (Figure 4(a,b)), where the 
subscript nf represented the non-flood period. σ0

i;x 

represents the observed pixel backscatter coefficient 
in the ith image at pixel x:

Second, we normalized the backscatter coefficient of 
pixel x during the flood using Equation 3, where t is 
the acquisition time of the image. 

In order to better represent the background informa
tion of pixels, it is required that the sensor acquisition 
mode IW, EW, SM, and wave (WV), orbital direction 
(ascending and descending) and polarization mode 
(VV or VH) of multi-phase image data should be con
sistent. The normalization result is shown in Figure 4. 
It is clear that the PS normalization of the event 
images can well represent the anomaly degree of 
the flood event images from the background 
information.

3.3. Bayesian flood probability estimation

The flood probability estimation algorithm depends 
on the statistical distribution assumption and 
Bayesian inference (Giustarini et al. 2016; Schlaffer 
et al. 2017). Pixels on the PS normalized image are 
regarded as disjoint union data of flooded (F) and 
non-flooded (�F) parts (Chini et al. 2016), and the prob
ability of each pixel being flooded is calculated 
according to the normalized backscatter value. The 
probability density function of the backscatter coeffi
cient distribution of flooded pixels is p σ0jFð Þ, and that 
of non-flooded pixels is p σ0j�Fð Þ. The marginal 

Figure 3. The UAV DOM obtained on 12 October 2021. Yellow 
points were randomly generated (2,000 in total) for validation 
purposes in Section 4.
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distribution of the normalized backscatter coefficient 
is p σ0ð Þ, which can be expressed as Equation 4, 
where p Fð Þ þ p �Fð Þ ¼ 1. 

When the normalized backscatter coefficient σ0 of 
a pixel is given, the conditional probability of pixel 
inundation is estimated by using Bayesian inference 
as follows: 

By substituting the Equation 4 into the Equation 5, we 
can further obtain Equation 6 for calculating p Fjσ0ð Þ. 

In the above equation, it is necessary to estimate p Fð Þ, 
p �Fð Þ p σ0jFð Þ, and p σ0j�Fð Þ, respectively. p Fð Þ and p �Fð Þ
denote a priori probability, which refer to the prob
ability that pixels are classified as flooded or non- 
flooded according to existing studies (e.g. Meng 
et al. 2019). In this paper, we chose the default value 
of a priori probability p Fð Þ and p �Fð Þ to 0.5 according 
to Westerhoff et al. (2013). A larger or a smaller p Fð Þ
means the initial probability assigned to the hypoth
esis is either leaning toward the occurrence of the 
flood or vice versa.

Because of its specular reflection, the flood water 
body shows a low backscatter coefficient in Sentinel-1 

Figure 4. PS normalization of the GRD images during the flood process. (a) Mean backscatter coefficients for the historical reference 
background from 2020-01-01 to 2021-09-30. (b) The square root of the standard deviation of backscatter coefficients for the same 
period as (a). (c-f) PS normalization for images 2021-10-05, 2021-10-12, 2021-10-17 and 2021-10-24, respectively.
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GRD images, and the statistical distribution histogram 
of backscatter coefficient h σ0ð Þ of images with 
a certain range of flood water body is one bimodal 
as a whole. In fact, previous studies have shown that 
the logarithmic variation of the SAR intensity data 
obeys a Gaussian distribution (Xie et al. 2002). In 
other words, h σ0ð Þ can be used to calculate the con
ditional probability distribution of p σ0jFð Þ and 
p σ0j�Fð Þ. In this paper, we assumed that the statistical 
distribution histogram of the flooded pixels and the 
non-flooded pixels obeyed Gaussian distribution. At 
a given normalized backscatter coefficient value, the 
conditional probability distributions p σ0jFð Þ and 
p σ0j�Fð Þ can be expressed as follows: 

The estimation of the four unknown parameters in the 
above equation (mF , sF , m�F , s�F) was mainly through 
the application of the hybrid modeling technique to 
the image histogram h σ0ð Þ. This was achieved by 
iteratively fitting the histogram to the Gaussian dis
tribution by, 

where AF and A�F represent the peaks of flooded and 
non-flooded pixels in the histogram (Wilks 2006), 
respectively. The initial values of the six parameters 
(AF , A�F mF , sF , m�F , s�F) were obtained by using the Otsu 
algorithm (Otsu 1979).

The main steps included the selection of the region 
of interest (ROI) and the determination of the classifi
cation threshold. The selected ROI had a bimodal dis
tribution, and the threshold was determined by 
traversing the intensity values from the smallest to 
the largest so that the interclass variance was max
imized. Through the threshold, the ROI can be divided 
into two classes, and Gaussian fitting was performed 
separately to obtain the initial values of the six para
meters. Then, the Levenberg-Marquardt algorithm 
was used for nonlinear least square fitting 
(Marquardt 1963), and the optimal distribution 

parameters are obtained by iterative calculations, 
until the four parameters converge.

When the four parameters (mF , sF , m�F , s�F) were 
determined, we can get the conditional probability 
distributions of p σ0jFð Þ and p σ0j�Fð Þ using Equation 7 
and 8. The probability p Fjσ0ð Þ for each pixel after 
a given normalized backscatter coefficient can be 
calculated from Equation 6. The method flow includes 
data preparation, PS normalization, Bayesian prob
ability estimation, and probabilistic flood mapping, 
which are shown in Figure 5.

3.4. The reliability diagram validation method

To validate the obtained probabilistic flood maps, we 
used high-resolution UAV DOM as ground truth 
obtained on the same date (12 October 2021) with 
the GRD image. To quantitatively calculate the accuracy 
statistics, 2,000 pixels covering the entire DOM were 
randomly selected (Figure 3) with their flooding status 
(flooded or non-flooded) being manually labeled.

We used a reliability diagram method proposed by 
Horritt (2006) to evaluate the performance of prob
abilistic flood mapping. The reliability diagram uses 
the calibration function to validate the flood prob
ability map. First, the range of probability values 
[0, 1] is split into N = 10 intervals (Brocker and Smith  
2007; Hostache et al. 2011; Renard and Lall 2014), i.e. Ik 

∈{[0, 0.1], (0.1, 0.2], . . . , (0.9, 1]}, with centers ik = 0.05, 
0.15, . . . , 0.95, k = 1, 2, . . . , N. The values of these 
centers represent an averaged flood probability of the 
pixels within each interval (i.e. modeled probability). 
Second, the value of the calibration function for each 
interval is calculated as the proportion (�Qk) of the 
pixels in the interval that are actually observed by 
the DOMs as flooded (i.e. the observed probability). 
This observed probability should be close to the mod
eled probability if the calculated flood probability 
maps successfully represent the real world.

We used the “degree” of reliability to quantitatively 
assess the accuracy of the flood probability maps, 

wherenk is the total number of pixels in each interval. 
Re is given in the form of weighted root-mean-square 
error, which indicates the degree of deviation 
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between the ik and �Qk . Small Re indicates a higher 
accuracy of the probabilistic flood map and vice versa.

3.5. Additional methods used for comparisons

To compare the proposed method with other 
methods, we also obtained flood delineation 
results from two methods as mentioned in 
Section 1, including the Sentinel-1 dual-polarized 
water index (SDWI) threshold method (J. Guo et al.  
2021) and the Z-score method (DeVries et al.  
2020).

(1) SDWI
By leveraging the distinctive signal contrast 

between water and other elements within dual- 
polarized bands, SDWI effectively amplifies water 

body details while concurrently mitigates the impact 
of soil and vegetation interference (Tian et al. 2022). 
SDWI can be computed as follows: 

Where VV and VH are values of the dual-polarized in 
polarization mode, respectively.

(2) Z-score
This approach employs temporal anomaly mea

sures for flood monitoring. The temporal mean 
backscatter coefficient (�ω0) and standard deviation 
backscatter coefficient (std ω0ð Þ) are computed 
during the non-flood period. For each observation 
captured at time q, the backscatter Z-score is 
determined based on Equation 12, with considera
tion given to the polarization mode (p), sensor 
acquisition mode(s), and orbital direction (d). 

Figure 5. The improved flood probability mapping based on PS and Bayesian framework.
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We selected the image on 12 October 2021 (the most 
flood-affected image) in the study area as the com
parison image and generated binary flood maps, 
respectively, by the SDWI and Z-score methods. We 
first calculated the SDWI and the threshold (−0.06) 
was obtained from the histogram of the SDWI to 
extract the flooded pixels (Tian et al. 2022). For the 
Z-score method, we tested a set of thresholds (−1.50, 
−1.00, and −0.50) and obtained overall agreements of 
0.76, 0.79, 0.78, respectively. Therefore, the optimal 
threshold was determined as −1.00 (DeVries et al.  
2020).

As the assessment method in Section 3.4 is used for 
probability maps and is not suitable to evaluate binary 
maps, we used additional accuracy indicators including 
the user’s accuracy, producer’s accuracy (UA and PA), 

overall accuracy (OA), and Kappa coefficient (Congalton  
1991; Thompson and Walter 1988). Higher UA and PA 
values indicate smaller numbers of overpredicted pixels 
and underpredicted pixels, respectively. OA determines 
the overall efficiency of an algorithm, representing the 
proportion of correctly classified samples to all samples. 
Kappa indicates the degree of consistency between the 
real data on the ground and the classification value, with 
a value closer to 1 suggesting better consistency in the 
classification result.

4. Results

4.1. Flood probability maps

The generated flood probability maps of the four 
dates during the flood process (Table 1) are shown 
in Figure 6. The whole process from occurrence to 
disappearance of the Xinjiang flood was captured. 
Affected by heavy rainfall, the cultivated crops in 

Figure 6. The flood probability maps. (a) 2021-10-05, (b) 2021-10-12, (c) 2021-10-17, (d) 2021-10-24. (e) Four flood stages identified by 
the percentage of flooded pixels with a flood probability of larger than 0.8.
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a small part of Figure 6(a) were submerged on 
October 5th (denoted as a red box). On October 7th, 
the dam in the north section of Fen River near 
Qiaodong Village collapsed (the red box in 
Figure 6(b)). At the same time, several days of rainfall 
made the inundation range in the study area reach 
the maximum on October 12th, as shown in Figure 6 

(b). Most of the cultivated crops (see Figure 1(c)) 
around the original water had been submerged, pre
senting a flaky area. On the same day, the flood water 
overflowed into Nanguan Village near the river, and 
the local residents were evacuated. Figure 6(c) 
shows that the flood in a large area of cultivated 
crops and the ponding in Nanguan Village (red 

Figure 7. The evaluation of the flood probability maps respectively for the non-normalized (a) and normalized (b) results. The first row 
shows the backscatter histogram Gaussian curve fitting of the ROI defined in Figure 2 (the white box). The second row shows the 
marginal distribution of the backscatter coefficient of the same ROI. The third row shows the probability of a pixel being flooded of the 
same ROI based on the Bayesian estimation Equation 5. The fourth row shows the reliability diagrams using the 2000 random 
validation samples on the UAV image.
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boxes) were also gradually receding on 
October 17th. In Figure 6(d), the flooded areas 
had diminished, and the flood in the cultivated 
crops had largely receded.

The flood probability maps capture the dynamic 
process of flood progression. As discussed by Rahman 
and Thakur (2018) and H. Yang et al. (2021), the life
cycle of a flood can be divided into different stages 
depending on the spatial coverage of the flooded 
areas. By calculating the percentage of flooded pixels 
whose probabilities are greater than 0.8, we distin
guished four stages during the flood process, i.e. 
emergence, peak, receding, and disappearance 
(Figure 6(e)). During the emergence stage, the flood 
waters began to accumulate and spread across the 
affected area (Figure 6(a)). This initial phase was char
acterized by the rising water levels and the encroach
ment of flood waters into low-lying regions. As the 
flood continued to intensify, it reached its peak stage, 
with the flood probability map (Figure 6(b)) precisely 
delineated the regions most susceptible to severe 
flooding. This marked the period when the flood 
waters attained their highest levels, causing signifi
cant inundation of the surrounding terrain. Following 
the peak stage, the inundation area decreased gradu
ally during the receding stage. The map (Figure 6(c)) 
tracked and visualized the gradual reduction in water 
levels, aiding in the assessment of potential risks and 
facilitating recovery efforts. Finally, the disappearance 
stage (Figure 6(d)) marked the point at which the 
flood waters dramatically subsided, and most affected 
areas returned to their normal state.

By capturing these four stages of the flood process, 
the flood probability maps play a crucial role in under
standing the temporal evolution and spatial distribu
tion of the flood event. These identified characteristics 
serve to enhance our flood response capabilities. For 
example, images at different flood stages will be 
obtained during a flood event so that we can analyze 
the spatial characteristics of the flood-affected pixels 
to determine the flood status and evolution over time.

4.2. Validation of flood probability maps

To validate the performance of the proposed method, 
we selected a ROI (the white box in Figure 2) to check 
the distinguishability of flooded and non-flooded pix
els. The validation results are shown in Figure 7 (the 

first three rows). To highlight the importance of the PS 
normalization, we show here the validation results of 
both the non-normalized and normalized images. The 
backscatter coefficient histogram h σ0ð Þ of the 
12 October 2022 image (Figures 7(a1) and (b1)) can 
be well fitted by two Gaussian curves using the 
Levenberg-Marquardt nonlinear least square fitting, 
respectively, for the flooded (red) and non-flooded 
(green) parts, with the normalized image having two 
obvious peaks which are easier to be separated into 
two categories. Figures 7(a2) and (b2) show that the 
marginal distribution function of σ0 derived by sub
stituting four parameters (mF , sF , m�F , s�F) into 
Equation 7 and 8 from which the flooded condition 
probability p Fjσ0ð Þ was calculated based on Bayesian 
estimation (Equation 6). The difference between non- 
normalized and normalized images lied in their pixel 
value range and representation. The former might 
have different pixel value ranges across different 
images, requiring additional preprocessing when 
comparing and processing them. However, the latter 
provided better data consistency and processing cap
abilities by standardizing the pixel values to a unified 
range. After applying PS normalization, the boundary 
between flooded and non-flooded became clear and 
hence easier to distinguish.

We then used a high-resolution UAV DOM and the 
reliability diagram as mentioned in Section 3.4 to 
validate the accuracy of the flood probability map. 
Since the DOM was captured on October 12, we 
used the flood probability map on the same date to 
avoid any uncertainties caused by time differences. 
We sampled 2,000 random points in Figure 3 whose 
flooding status (flooded or non-flooded) was identi
fied by manual interpretation. The reliability diagrams 
(Re) in Figures 7(a4) and 7(b4) represent the consis
tency between the flood probability map and 2,000 
verification points on the high-resolution DOM. It can 
be observed that the accuracies of the flood probabil
ity maps of both methods were relatively low when 
the pixel’s probability of being flooded was small 
(<0.5). This was because within this range, the back
scatter characteristics of the pixels were not predomi
nantly influenced by water but exhibited complex 
features. However, as the flood probability increased 
and exceeded 0.5, the accuracies improved signifi
cantly. The accuracy of the normalized method was 
notably enhanced when the pixel’s probability of 
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being flooded was large (>0.5), suggesting it aided in 
improving the accuracy of flood detection for pixels 
with a higher probability of being flooded. The overall 
reliability (measured by Equation 10) of the normal
ized result reached 0.05, improved by 28.57% com
pared with the non-normalized result, indicating an 
improvement in the accuracy and consistency of the 
flood probability maps. Detailed statistics are shown 
in Table 2.

4.3. Comparisons against SDWI and Z-score

The flood maps, respectively, from this paper, SDWI 
and Z-score methods are shown in Figure 8. The flood 
probability map was converted into a binary map by 
a given threshold of 0.4 (medium to extremely high 
flood probabilities as will be discussed in Section 5.1). 
The resultant statistics are listed in Table 3. The num
ber of pixels in the flooded and non-flooded columns 
represent actual categories from the high-resolution 
DOM, and the corresponding columns represent clas
sified categories according to different methods. The 
SDWI method achieved a high UA, hovering around 
87%; however, its PA was slightly lower, standing at 
approximately 75%, compared to the Z-score method 
(78%). Our proposed method yielded promising 
results, achieving the highest OA at 85.20% compared 
to 82.30% and 79.35% from the other two methods, 
respectively, signifying its comparative effectiveness. 
The Kappa coefficient was 0.70 for our method, which 
was considerably higher than the other two methods, 
suggesting a notably high level of consistency 
between the flood classification presented in this 
paper and the ground truth data.

The predominant land use types in the study area 
are comprised of croplands and built-up areas, 

accounting for a total of 93.1% of the entire area. 
Table 4 presents a comparison of the flood mapping 
results, respectively, on croplands and built-up areas 
using different methods. Our proposed method 
demonstrated improved performance when com
pared to both SDWI and Z-score, particularly notice
able in the reduction of the false-negative samples 
and false-positive samples across different land use 
types. On croplands, our method outperformed the 
SDWI method by reducing the false-negative samples 
by ~3.4% and lowering the false-positive samples by 
1.7%. When compared with the Z-score, our method 
only exhibited a slight improvement in false-negative 
reduction (0.9%), but a more substantial false-positive 
decrease (50%). The improvements were more 
obvious in built-up areas, with the proposed method 
displaying a dramatic decline in the false-negative 
samples (61.2% and 17.4% decreases compared to 
SDWI and Z-score, respectively). The false-positive 
samples also decreased from 118 and 171, respec
tively, for SDWI and Z-score to 98 for the new method. 
In conclusion, the method introduced in this study 
consistently improves the accuracy of flood mapping, 
especially demonstrating a marked advantage in 
minimizing false-negative samples, and therefore 
enhances the overall classification accuracy.

The observed performance differences in different 
land use types can primarily be attributed to their 
significant differences in surface characteristics. 
Croplands generally facilitate accurate flood detec
tion due to their uniform surface reflectance proper
ties whereas built-up areas show complex reflection 
patterns (e.g. shadow effects) which complicate flood 
recognition tasks (Pulvirenti et al. 2016). It is therefore 
suggested that the land use type should be carefully 
considered when assessing flood mapping results.

Table 2. Detailed data information for reliability diagrams.

Probability Probability level
Percentage of flooded pixels by modelling 

(ikÞ(%)

Non-normalized PS normalized

Percentage of flooded pixels by UAV 
(�QkÞ(%)

Percentage of flooded pixels by 
UAV 

(�QkÞ (%)

0.0–0.1 Low 5 14 9
0.1–0.2 15 13 32
0.2–0.3 25 19 28
0.3–0.4 35 25 30
0.4–0.5 Medium 45 47 29
0.5–0.6 55 61 58
0.6–0.7 High 65 70 67
0.7–0.8 75 76 74
0.8–0.9 Extremely-high 85 91 84
0.9–1.0 95 98 94
Re – – 0.07 0.05
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5. Discussion

5.1. The dynamic process of flooding

Previous studies distinguished flooded and non- 
flooded areas by setting a threshold probability 

value 0.5 based on the probability map. But, this 
paper divided the flood probability interval into four 
levels (Table 2), namely extremely high (0.8–1.0), high 
(0.6–0.8), medium (0.4–0.6), and low (0.0–0.4) to ana
lysis the flood process in detail. These probability 
breaks were set according to the temporal and spatial 
characteristics of the flood probability maps. Various 
algorithms have used probability breaks to analyze 
probability maps, including natural breaks (Tien Bui 
et al. 2019), quantile breaks (Rosser, Leibovici, and 
Jackson 2017; Tehrany et al. 2015), and customized 
breaks (Alfonso, Mukolwe, and Di Baldassarre 2016). 
Natural breaks can reveal the inherent structure and 
patterns in data but may lead to pixels in critical areas 
being incorrectly assigned to a higher flood probabil
ity level when the distribution of flood probabilities is 
non-continuous and uneven. Quantile breaks ensure 
a uniform distribution of probability values within 
each category so that they are not suitable when 
flood probability distributions are irregular, e.g. fluc
tuations near lower quantiles can potentially result in 
some pixels being inappropriately categorized into 
a higher risk tier. In this study, we used a customized 
classification method to deal with the dynamic pro
cess of flooding. This approach allows us to flexibly 
set thresholds based on the physical characteristics of 
floods and their actual impacts, thus enabling a more 
precise representation of the spatial distribution 
(Figure 6) and temporal evolution (Figure 9) of pixels 
affected by floods.

The extremely high level represented a significant 
change in ground reflectivity caused by the flood, 
where the corresponding land use/cover was comple
tely submerged. The high level signified 
a considerable change in reflectivity, indicating 
a semi-submerged state of the ground. For instance, 
in vegetated areas, the degree of inundation might be 
approximately half. The medium level indicated 
a moderate change in reflectivity, and pixels assigned 
to this level mostly represented areas in a transitional 
state. Continuous rainfall accumulation or drainage 
system blockage might result in localized floods in 
these areas. On the other hand, the low level denoted 

Figure 8. The flood binary maps generated, respectively, by this 
paper (a), SDWI (b) and Z-score(c).

Table 3. Accuracy assessment of flooded and non-flooded classification using different methods.
Method Flooded Non-flooded PA(%) UA(%) OA(%) Kappa

This paper Flooded 793 186 81.00 87.82 85.20 0.70
Non-flooded 110 911 89.23 83.04

SDWI Flooded 731 248 74.67 87.34 82.30 0.64
Non-flooded 106 915 89.62 78.68

Z-score Flooded 761 218 77.73 79.60 79.35 0.59
Non-flooded 195 826 80.90 79.11
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relatively stable reflectivity, with minimal submer
gence. This included permanent water bodies or high- 
rise buildings that remained largely unaffected by the 
flood.

To explore the dynamic process of flooding, we 
conducted statistical calculations to analyze the tem
poral evolution of flood-affected pixels at each of the 
four flood probability levels. The results are illustrated 
in Figure 9, revealing distinct temporal characteristics 
for different flood levels. Starting from October 12th, 
the area transitioning from the extremely high level to 
other levels was considerably larger than the area 
transitioning from other levels to the extremely high 
level. This indicated a sharp and relatively short-lived 
peak in flooding. By October 17th, the high and med
ium levels experienced transitions not only from the 
extremely high level but also from the low level. 
Notably, the area occupied by medium-level pixels 

remained relatively unchanged. In the final stage, 
pixels sequentially shifted from medium to extremely 
high levels, with the majority ultimately transitioning 
to the lower level. Comparing the three levels exclud
ing the low level, the duration of their peaks varied 
significantly, with the medium level exhibiting the 
longest duration and the extremely high level the 
shortest.

During the early stages of flooding, areas within 
extremely high and high levels are typically the first to 
be affected because they are often located in low- 
lying areas that are prone to flooding. As the flood 
began to recede, the water level in these areas 
decreases, causing the backscatter coefficient of 
pixel changes significantly, and the pixel probability 
values decrease. Such a detailed quantitative analysis 
of the dynamic evolution of the flood process com
bining spatial (Figure 6) and temporal (Figure 9) infor
mation would illustrate flood risk effectively and is of 
great importance in decision-making.

5.2. Method transferability

In order to examine the transferability of the method, 
we added another three testing sites including the 
River Severn in the city of Tewkesbury, UK 
(11 February 2016), a hurricane Harvey-related flood 
event in the metropolitan area of Houston, USA 
(30 August 2017), and the Webi Shebelle River in the 
city of Beledweyne, Somalia (7 May 2018). We first 
examined the consistency of the proposed method 
by calculating the normalized backscatter coefficient 
and an optimal coefficient that should show a two- 
peak distribution which makes the flood-affected pix
els more distinguishable. In the absence of high- 
precision ground truth data, we further compared the 
resultant flood maps against those extracted through 
NDWI (McFeeters 1996) analysis on Sentinel-2 optical 
images captured during the flood event (respectively, 
on 10 February 2016 and 4 September 2017, 

Table 4. Flood mapping results among different land use types (no. of points).
Land use This paper SDWI Z-score

Cropland True positive 613 554 602
False positive 10 12 20
True negative 269 267 259
False negative 115 174 126

Built-up area True positive 76 46 72
False positive 98 118 171
True negative 620 600 547
False negative 19 49 23

Figure 9. Four levels of flood probabilities and their transforma
tion during the flood from 2021-10-05 to 2021-10-24.
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Figures 10(a3) and (b3)). For the third event where the 
cloud coverage was high, we used the flood extent 
map provided by UNITAR (https://unitar.org/unosat/ 
node/44/2796) which was manually extracted using 
Radarsat-2 data collected on 9 May 2018.

The resultant flood probability maps are shown in 
Figure 10. The normalized backscatter coefficients used 
in the proposed method for the three events showed 
apparent two-peak distributions which facilitated the 
identification of flooded pixels. The proposed method 
well captured the spatial characteristics of the flood- 
affected areas which showed a high consistency with 
the referenced flood maps (third row in Figure 10). One 
notable difference occurred in the black box (Figure 10 
(c3)) where numerous points were classified as flooded 
in UNITAR but not by our proposed method. However, 
Martinis, Plank, and Ćwik (2018) have found that this 
particular area exhibited a unique and stable character
istic of low backscatter, maintaining values around 
approximately −20 dB, so that it was not caused by 
flooding. Our proposed method overcame this pro
blem by considering historic images in the PS normal
ization step. However, it is difficult to calculate precise 
statistics between our flood probability maps and the 
reference maps as i) differences in acquisition times can 
lead to shifts in the actual extent of flooding; and ii) the 
presence of clouds can obstruct clear depiction of the 
true flood conditions in optical images. To conclude, 
the proposed method exhibits a high degree of trans
ferability which underscores the method’s robustness 
and its capability to deliver commendable perfor
mance in a wide array of contexts and applications.

Nonetheless, flood probability maps still exhibit 
limitations in specific environments, particularly in 
areas characterized by dense vegetation and pro
nounced shadow effects, and some edges of flat 
anthropogenic structures within cities can be misin
terpreted as water due to layover (Giustarini et al.  
2013). These complexities can contribute to inaccura
cies in pinpointing the boundaries of flood zones and 
estimating the full extent of impacted areas. Despite 
these challenges, flood mapping using SAR images 
acts as a significant supplement to traditional flood 
mapping methods. By consistently refining and 
enhancing the methodologies employed in flood 
probability mapping, there exists a potential to 
improve the precision and dependability of flood 
monitoring and associated geographical information 
extraction procedures.

6. Conclusion

In this study, we introduced a novel flood mapping 
approach that combined PS normalization and 
Bayesian probability estimation. The utilization of 
image normalization allowed for a distinct differentia
tion between flooded and non-flooded pixels within 
the image. The results revealed a remarkable 
improvement of 28.57% in reliability compared to 
the non-normalized method and exhibited a high 
level of agreement, with a 95% match to the high- 
resolution UAV DOM. Compared with SDWI and 
Z-score methods, the new method generated satisfy
ing results with the highest UA and PA (above 88% 
and 81%). This enhancement indicated that the prob
ability map generated through our proposed 
approach exhibited high accuracy and feasibility. By 
combining Gaussian fitting and Bayesian probability 
calculations, the proposed method aims to make the 
flood mapping process more adaptable and less reli
ant on manually set thresholds.

Previous research primarily concentrated on exam
ining the extent of flood inundation during specific 
flood events, with limited studies focusing on monitor
ing the dynamics of floods over time. This paper aims 
to address this gap by acquiring four probability maps 
that capture various stages of the flood process, 
enabling the monitoring of flood dynamics. We divided 
the flood probability range of [0, 1] into four levels: 
extremely high, high, medium, and low. Each probabil
ity level exhibited unique temporal characteristics, with 
the extremely high level experiencing rapid increases 
and decreases, while the medium level displaying more 
gradual changes. By observing these variations, we 
gained insights into the dynamic nature of flood events 
beyond mere inundation mapping.

The findings from this study have significant impli
cations for the development of comprehensive flood 
risk management strategies. By incorporating this 
method into existing flood management practices, 
authorities and stakeholders can enhance their ability 
to minimize the adverse impacts of floods on commu
nities, infrastructure, and the environment. In the 
future work, we will explore the integration of addi
tional remote sensing data sources, such as multispec
tral or hyperspectral images, to enhance the method’s 
accuracy and reliability. Combining data from different 
sources (e.g. crowdsourced data or social media infor
mation) can provide a more comprehensive 
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Figure 10. The first row shows the original sentinel-1 GRD images. The second row shows the flood probability maps generated by the 
proposed method. The third row shows the flood extent map generated by optical images (the first two columns) and SAR image (the 
third column). The fourth row shows the marginal distribution of the normalized backscatter coefficient. (a) Tewkesbury, (b) Houston 
(USA), (c) Beledweyne.
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understanding of flood dynamics so that a more pre
cise and efficient flood response plan can be made.
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