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Abstract—The rapid mapping of co-seismic landslides is essential
for emergency management and loss assessment. Deep learning
algorithms generally follow a supervised learning workflow, where
the trained model is used to predict landslides in surrounding
areas, achieving landslide mapping with high accuracy. For a new
study area landslide extraction task, the performance of the model
trained on a specific dataset will be greatly reduced due to the
varying data distribution of co-seismic landslides. Considering the
urgent need for large-scale co-seismic landslide mapping, we de-
veloped a generalized deep learning-based landslide identification
method. First, a new model—ResU-SENet is developed to generate
semantic segmentation maps of landslides. The proposed model
adaptively emphasizes the channel-wise weights of the input data.
Three multidomain models are then designed by combining an-
notated landslide samples from two different domains to improve
the model generalization ability. Finally, the trained models are
applied directly to completely unknown domains to test model
generalizability. Experiments in Iburi and Jiuzhaigou showed that
the proposed model yielded the recall values of 5.93% and 7.51%
higher than ResU-Net. The adoption of multidomain models ef-
fectively reduced the number of new training samples required
by 50% and maintained a similar identification performance as if
trained entirely with new samples. Applying the models trained
by Jiuzhaigou and Iburi samples directly to Palu, the F1-score
under the ResU-SENet model reached 0.6875. Moreover, the con-
nections between model generalization and data distribution was
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demonstrated. This work could provide a fast response for future
large-scale co-seismic landslide mapping.

Index Terms—Change detection, co-seismic landslide
inventory mapping, generalization, landslide identification,
medium-resolution imagery, multidomain trained model, semantic
segmentation.

I. INTRODUCTION

A
S A common and frequent secondary geological hazard of

earthquakes, co-seismic landslides usually cause surface

rupture, which not only makes emergency rescue difficult but

also causes serious economic losses [1], [2]. For instance, the

Mw 7.8 earthquake that struck Turkey on February 6, 2023,

resulted in over 40 000 fatalities due to landslide disasters. Due to

the characteristics of large-scale, powerful destructiveness and

wide distribution of co-seismic landslide, the landslide hazard

analysis is inseparable from co-seismic landslide inventory maps

[3]. Reliable co-seismic landslide inventories further provide the

theoretical underpinning for preventing and controlling geolog-

ical disasters, as well as for facility location and facility layout

[4].

Scientists have taken note of the challenges that co-seismic

landslide mapping continues to face: accuracy and timeliness.

The traditional method of landslide detection, which relies on

field surveys, is frequently impeded by harsh environments and

inaccessible high mountainous areas, making it inefficient and

resulting in poor accuracy of landslide mapping. Afterward,

various landslide mappings have been developed using remote

sensing images. Landslide inventory maps were initially created

through visual interpretation. This method was criticized as

being labor- and time-intensive, especially when mapping large

areas [5]. Later, the advent of semiautomated landslide detection

techniques compensates for the weaknesses of visual interpreta-

tion and can be categorized as either pixel-based or object-based

methods. Change detection technique is the commonly used

pixel-based landslide detection method [5], [6], [7]. Landslides

are regarded as land cover changes through pre- and post-images.

Ancillary datasets, such as digital elevation models (DEMs)

and the Normalized Difference Vegetation Index (NDVI), are

applied to improve the accuracy of landslide identification [8],

[9], [10]. However, pixel-based landslide mapping relies solely

on the spectral characteristics of individual pixels and is sensitive

to noise [11]. Object-oriented analysis exploits the content infor-

mation of local pixel neighborhoods, but it is highly dependent
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on the segmentation scale and optimal parameter values and

requires high spatial resolution images [12].

Deep learning (DL) has been extensively employed in image

classification, including handwriting recognition, face recog-

nition, and medical diagnosis. The similarity between natural

images and remote sensing images makes the remote sensing

image processing based on DL algorithms possible. In 2014,

Long et al. [13] proposed fully convolutional networks (FCNs),

which enabled the end-to-end, pixel-level image classification

[14]. Various deformed semantic segmentation models, such as

U-Net [15], SegNet [16], and the DeepLab series [17], have

been employed for landslide identification based on FCN. Liu

et al. [18] ultilized the Google Earth Engine (GEE) platform

and U-Net for co-seismic landslide recognition. Yu et al. [19]

proposed a two-branch Matrix SegNet for landslide semantic

segmentation using change detection with images of different

spatial resolutions. Lu et al. [20] developed a dual-encoder

U-Net for landslide mapping and achieved a maximum F1-

score of 79.24%, outperforming SegNet, U-Net, and Attention

U-Net. Gao et al. [14] proposed the FC-DenseNet, which re-

peatedly uses extracted features in a dense structure and incor-

porates landslide influencing factors. The results demonstrate

that FC-DenseNet has great potential for landslide detection and

mapping [14]. In this work, ResU-Net [21] has been used as

the benchmark network. Considering that different geomorphic

units have varying contributions to the occurrence of landslides,

and the abundance of channel redundancy information in skip

connections between the encoder and decoder, a new model

namely ResU-SENet was proposed.

The superior performance of DL in landslide mapping is

driven by a large number of labeled landslide training samples.

In reality, accessing the annotated landslide samples of all co-

seismic events is a resource-intensive and challenging process.

When the probability distributions of training data and testing

data are different due to domain gaps, such as environmental con-

ditions and imaging conditions, the performance of DL models

often deteriorates. Therefore, it is urgent to investigate the trans-

ferability of models. Domain adaptation (DA) as a specific form

of transfer learning, aims to align the data distribution between

different domains, whereby reducing the domain discrepancy

and enabling the model to perform well in a completely new

domain [22]. When the target domain has no annotated label,

the task is called unsupervised DA (UDA). Several scholars have

introduced UDA to solve the problem of cross-domain landslide

mapping. Xu et al. [23] applied an adversarial learning-based

DA network which is called ANANet to perform different

co-seismic landslide identification task and an output space

adaptation strategy is adopted. It mainly focuses on single-

source to single-target DA. Considering landslides in different

domains have different triggering factors, imaging conditions,

and topography, Zhang et al. [24] proposed a prototype-guided

domain-aware progressive representation learning framework

for landslide mapping from multiple heterogeneous domains.

Qin et al. [25] used distant domain transfer learning for land-

slide mapping, which requires labeled landslide data and unla-

beled data from completely different domains. Other studies

have trained landslide identification models by constructing

multidomain datasets that contain training samples from dif-

ferent domains to enhance model generalization capability [26],

[27]. Meena et al. [26] selected landslide samples from 10 differ-

ent geographical environment domains and constructed a land-

slide detection dataset, and the generalization of the dataset was

tested on newly occurring landslide events. Prakash et al. [27]

proposed a generalized CNN, wherein landslide models were

trained on multiple geographic domains and achieved a superior

performance to single domains. However, these previous studies

simply combined all the landslide samples without considering

the relationship between data distribution and model efficiency.

Moreover, the existing landslide datasets are mainly true-color

images constructed by RGB bands, topographic factors and

spectral information were not fully utilized.

In this work, we achieved the model generalization ability

through multidomain training and revealed the connections

between the model generalization and data distribution. This

not only substantially reduces the number required to annotate

new labels but also provides a guideline for model selection

based on data distribution. Meanwhile, four co-seismic landslide

datasets have been constructed, making full use of spectral and

topographic information.

The term “domain” represents landslide satellite datasets from

different geographical environments, illumination conditions,

and imaging conditions. There are three domains in this work:

1) the Iburi domain (Ib), 2) the Jiuzhaigou domain (J), and 3) the

Palu domain (P). Depending on the experimental setup, the do-

mains are further divided into “known” domains and “unknown”

domains. The “known” domains represent the regions used to

train the models (i.e., Iburi and Jiuzhaigou). The “unknown” do-

mains are not used for training models but rather are used directly

to test model generalizability (i.e., Palu). The term “sample”

means landslide or nonlandslide patches that were selected for

model training, validation, and testing. Each sample represents

a specific landslide event, characterized by landslide triggers,

geographical location, and imaging conditions. Sample is the

basic unit of model training and its quality significantly deter-

mines the model performance. Multidomain models represent

a combination of landslide training samples from two known

areas. When constructing a multidomain model, according to

the experimental setup, the two known domains are referred to

as the local domain and the foreign domain, respectively.

The main contributions of this study can be summarized as

follows.

1) A new segmentation network called ResU-SENet has been

proposed for landslide inventory mapping. The model

adaptively emphasizes the contribution weights of each

input channel to the occurrence of landslides.

2) Reference landslide inventories were created for co-

seismic landslide domains and the landslide label gen-

eration process was automated, based on the ArcGIS

platform. Multichannel landslide datasets were produced

for landslide mapping.

3) Landslide identification multidomain models were pro-

posed by combining annotated landslide labels from dif-

ferent domains. Samples from Jiuzhaigou and Iburi were

selected to train the benchmark model and multidomain
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Fig. 1. Geographical location of each study area and Sentinel-2 images corre-
sponding to pre- and postearthquake images. (a) Iburi. (b) Jiuzhaigou. (c) Palu.

TABLE I
KEY INFORMATION OF CO-SEISMIC LANDSLIDES DATASETS

model and were directly used to test generalization ability

in Palu domains.

4) The impact of data distribution on model generalization

performance is discussed.

It is noteworthy that, when the model proposed in this ar-

ticle are directly applied to the 2022 Luding co-seismic land-

slide, good results are also obtained. Precision, recall, F1-score,

Matthews correlation coefficient (MCC), and Intersection over

Union (IoU) were utilized to compare the robustness of these

models.

II. STUDY AREA AND DATA

In this work, we selected three co-seismic landslide regions

as study areas. To take advantage of the free Sentinel-2 imagery,

we deliberately selected co-seismic events after mid-2015. This

ensured that the models generated from this work could be ap-

plied to landslide mapping in new areas based on freely available

imagery. Each study area’s geographic location is displayed in

Fig. 1, together with pre- and postearthquake Sentinel-2 images

with RGB synthesis. Table I summarizes the key information

for each earthquake.

A. Iburi Earthquake

On September 6, 2018, an Mw 6.6 earthquake struck the

Tobu area of Iburi, Hokkaido, Japan. The shock induced at least

6000 landslides, most of which were shallow landslides [28].

In this work, the study area extends to an area of 683.86 km2,

with elevations ranging between 0 and 625 m. Two cloud-free

Sentinel-2 images were acquired on June 17, 2017 and May 23,

2019, respectively. The existing Iburi landslide inventory [29]

was then modified, creating a closer match between landslide

boundaries and Sentinel-2 images. A total of 7197 landslides

were mapped with areas ranging from 24 m2 to 0.205 km2.

B. Jiuzhaigou Earthquake

An Mw 7.0 earthquake with a focal depth of 20 km occurred

in the north of Sichuan Province, China on August 8, 2017.

More than 1700 aftershocks occurred over the next 36 hours,

causing landslides that removed vegetation and exposed many

hillsides [30], [31]. Several landslide inventories triggered by the

Jiuzhaigou earthquake have been mapped using high-resolution

imagery [30], [32]. Taking these inventories as a reference,

we selected 919.804 km2 as the study area and created a new

landslide inventory by way of the pre- and postevent images

from July 29, 2017 and September 7, 2017, by which to train the

DL models. From the optical images, we found that landslides in

Jiuzhaigou were characterized by varying sizes, complex shapes,

and confusion with surrounding features. From the inventory

map, we found that the spatial distribution of landslides is mostly

located in the northwest and southeast of the epicenter. Since

some landslides were covered by clouds in the pre-event image,

2021 landslides were ultimately identified, with areas ranging

from 22 m2 to 0.385 km2.

C. Palu Earthquake

On September 28, 2018, a mega-earthquake (Mw 7.5) struck

in the Palu region of central Sulawesi, Indonesia [33]. Massive

co-seismic landslides were caused particularly in nearby moun-

tainous regions [34]. In this work, we selected a surface area

of 2488.39 km2 near the Palu Basin as our study area, with

elevations ranging from sea level to approximately 2485 m. To

establish the landslide inventory in Palu, bitemporal images were

collected on July 14, 2018 and September 17, 2019, respectively.

Then, they were utilized to identify the main landslide concentra-

tion areas. Finally, 3436 co-seismic landslides were interpreted,

with areas ranging from 40 m2 to 0.312 km2, which were used

to test the model’s generalization ability.

D. Data Preparation

1) Sentineal-2 Data and Topographic Factors: We collected

optical data from the Sentinel-2 satellite and DEMs from the

Shuttle Radar Topography Mission for landslide identification.

Based on the principle of minimal cloud cover, which cor-

responds to bitemporal for each study area, a total of eight

Level-1C images were chosen. NDVI as a crucial index that

reflects the vegetation growth status is susceptible to vegetation

loss which may be caused by landslides. Therefore, NDVI

images corresponding to pre- and postevent were added as extra

channels to overcome the drawbacks of responding to landslides

detected with RGB spectral data only. It is defined as follows:

NDVI =
NIR − RED

NIR + RED
(1)
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Fig. 2. Sample production process.

where NIR and RED are the reflectance of the near-infrared and

red bands.

The steepness of the slope is a crucial topographic factor that

directly affects the movement of landslides [35]. Hillshade is

another topographic factor that has been extensively applied in

landslide mapping [36], [37]. Hillshade maps and slope were

derived from DEM, and these topographic factors were added

as ancillary data to enhance the model performance.

The topography and imagery data utilized in this work were

provided via the GEE platform, which is a cloud-based platform

that allows easy access to remote sensing imagery and the

processing of large geospatial datasets using online computing

resources [38].

Finally, there are ten input bands of the same resolution

(10 m) in each study area: slope, hillshade, pre-event red band,

postevent red band, pre-event green band, postevent green band,

pre-event blue band, postevent blue band, pre-event NDVI, and

postevent NDVI. On the other hand, the landslide inventories in

each study area were interpreted using Sentinel-2 images and the

ArcGIS platform. Detailed information is presented in Table I.

2) Generation of Dataset: According to the workflow of

sample production in Fig. 2, we first added a geographic co-

ordinate system to the collected data and resampled the data

to 10-m resolution by way of bilinear interpolation. We then

normalized the images using a max–min normalization approach

to facilitate the proposed network training. As for the sample

production, we exploited the toolbox integrated into the ArcGIS

platform, which can rapidly generate DL samples [39]. This

toolbox integrates all landslide sample generation operations

into the ArcGIS platform, rather than requiring users to work

across platform. This not only simplifies the complex sample

generation process but is particularly useful for the multiple

regions considered in this aticle. Predominantly, four tools were

used: “Batch Clipping of Each Factor Layer,” “Image Generation

to be Predicted,” “Data Sample Production,” and “Dataset Split.”

Table II details the functions of each tool.

TABLE II
MAIN TOOLS AND FUNCTIONS FOR SAMPLE PRODUCTION

The training of numerous trainable parameters in DL is driven

by a large number of labeled samples [40]. Data augmentation

strategies can broaden the training dataset variety, which also

helps in regularizing the trained model to improve generaliza-

tion [41], [42]. We expanded the Iburi and Jiuzhaigou training

datasets, exploiting horizontal flip, diagonal mirroring, and verti-

cal flip respectively. The number of samples ultimately obtained

was 1656 for Iburi and 1056 for Jiuzhaigou, including positive

and negative samples. Meanwhile, keeping the balance of posi-

tive and negative samples reduces overfitting and improves the

accuracy of landslide identification. The Palu samples were used

only to test the model’s generalization ability, and thus there were

109 samples for Palu and no data augmentation.

III. METHODOLOGY

For the study of model generalization, first, a novel semantic

segmentation network named ResU-SENet has been proposed

to achieve precise landslide extraction. Confronted with mul-

tiple co-seismic scenes mentioned in the article, we choose to

train several multidomain models by mixing samples from two

distinct source domains to validate the model generalization on

the target domain based on ResU-SENet.

A. Proposed ResU-SENet Network Architecture

With the purpose of extracting landslide from multichannel

remote sensing dataset, an efficient DL model is indispensable.

Existing landslide semantic segmentation models are mainly

encoder–decoder structures. However, as the encoder progres-

sively up-samples and extracts features, the details of small

targets are seriously lost, and there is a lack of local context in-

formation. To address this problem, skip connections have been

proposed to preserve the data details and semantic information

of raw data. Given the complex spectral characteristics, spatial

distributions, and scales of co-seismic landslides in different

domains, and there is a lot of channel redundancy information

in skip connection, it is important to adaptively emphasize the

contribution of channels to the occurrence of landslide, for the

effective propagation of low-level features.

Therefore, a new landslide identification network called

ResU-SENet was proposed (see Fig. 3). Three components make

up the network: an encoder, a decoder, and a bridge connecting

the encoder and decoder. The encoder and decoder parts are

to extract different features and precisely segmentation using

ResU-Net [21]. The channel-wise attention mechanism, SE

module [43] was embedded into the skip connection to adap-

tively obtain the importance of each low-level feature channel

and pass it to the high-level features. Finally, the landslide
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Fig. 3. Architecture of proposed ResU-SENet.

Fig. 4. Comparisons of plain neural unit (left) and residual unit (right) [21].

segmentation map was obtained by way of the classification

layer.

The encoder part, also known as the feature extractor, consists

of three residual units, as proposed by He et al. [44]. Compared

with a plain neural unit, the outstanding characteristic of a resid-

ual block is shortcutting and identity mapping, effectively allevi-

ating gradient vanishing and improving the depth of the trained

network [44]. Fig. 4 shows the structural differences between

the plain neural unit and the residual unit. The residual unit pre-

dominantly consists mainly of convolutional layers, activation

layers, and max-pooling layers. The convolutional layers extract

features from the input through convolutional operations. As the

number of iterations increases, the convolutional layers extract

higher-level features. The nonlinear activation layer improves

the expressiveness of the model by adding nonlinear factors to

linear convolutional layers through nonlinear functions. In this

work, rectified linear unit function was chosen. The pooling

layer effectively reduces the size of the parameter matrix and

accelerates the model training. After each down-sampling step,

the input feature size is reduced by half and the channel is

doubled. Correspondingly, the decoder part is also composed of

three residual units. The decoder concatenated the features from

the encoder (dashed arrows in Fig. 3) and transferred the merged

array to subsequent residual units for improved localization

while restoring the image size. Through continuous iteration

and backward propagation, the model parameters are trained and

adaptively tuned. Finally, a 1×1 convolution layer and sigmoid

TABLE III
DETAILED INFORMATION ON RESU-SENET STRUCTURE

activation layer are used to generate landslide segmentation

maps.

Skip connection is frequently utilized in U-shape networks

to connect the high-level and low-level features. However, there

is often much redundancy information in low-level features. As

a typical implementation of the channel attention mechanism,

the SE module focuses on the weight of each channel layer. It

consists of squeeze (sq), excitation (ex), and scale. For the input

features, the squeeze part is first operated in the spatial dimen-

sion through channel global average pooling. The weights are

then learned through two fully-connected layers and a sigmoid

function in the excitation part, with weight values constrained

between 0 and 1. Finally, the scale part utilizes the learned

weights to reweigh the importance of each channel.

Three SE modules are strategically embedded within the

skip connection architecture. The first module is designed to

reweight the landslide edge and color characterizes, enhancing

the low-level feature representations. The second was designed

after the output of Rseblock1 to highlight texture details specific

to landslide. The final SE module was positioned after the output

of Resblock2, and aimed to reweight the abstract high-level

semantic features. Through continuous iteration and learning of

the model, the greater the channel’s contribution to the landslide

occurrence, the greater its channel weight, and consequently the

landslide identification accuracy will increase.

The proposed ResU-SENet model allows the network to

focus on valuable features and suppress irrelevant features,

to adaptively obtain the importance of each feature channel

through learning and improve network performance. Table III

lists detailed information on the proposed ResU-SENet model.

Landslide pixels always account for a small proportion of

the sample, resulting in the predictions being strongly biased

toward the background [45]. Thus, the dice loss function [45]
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TABLE IV
CONFUSION MATRIX

was adopted in place of the more commonly used binary cross-

entropy

Dice loss = 1−
2Σh

i Σ
w
j pi,jgi,j + ε

Σh
i Σ

w
j pi,j + gi,j + ε

(2)

where h and w represent the height and width, i and j represent

the row and column number of pixels, pi,j is the predicted map

and gi,j is the ground truth label; and ε is a tiny constant to

avoid the denominator being zero. From Formula (2), we can

see that nonlandslide areas with values equal to 0 are neglected,

attenuating the imbalance between positive and negative pixels.

B. Validation Indexes

When evaluating the model performance in binary classifica-

tion, predicted labels are often compared with ground truth labels

[46], resulting in four kinds of classified pixels: true positive

(TP), false positive (FP), false negative (FN), and true negative

(TN). Table IV shows the composition of confusion matrix.

Based on these values, five commonly used evaluation metrics

were adopted—precision, recall, F1-score, IoU, and MCC and

are defined as

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

IoU =
TP

TP + FP + FN
(5)

F1− score = 2×
Precision× Recall

Precision + Recall
(6)

MCC =
TP× TN− FP× FN

√

(TP× FP) (TP× FN) (TN× FP) (TN× FN)
.

(7)

F1-score is the harmonic mean of precision and recall. MCC

is a balanced index that considers the TN. For these five metrics,

precision and recall are complementary relationships. High pre-

cision value means lower commission error and high recall value

means lower omission error. A high-performing CNN model is

considered to be indicated by a high F1-score and MCC, with

balanced precision and recall.

IV. RESULT AND ACCURACY ASSESSMENT

A. Experiment Setting

1) Construction of Dataset: Through data augmentation, we

obtained 1656 samples for Iburi and 1056 samples for Ji-

uzhaigou, including both positive and negative samples. To

ensure parity during experiments, the total number of samples

TABLE V
TRAINED MODEL IN THIS STUDY

TABLE VI
LANDSLIDE IDENTIFICATION RESULTS BASED

ON RESU-NET AND RESU-SENET

Fig. 5. Comparison of robustness of ResU-Net and ResU-SENet in different
domains. (a) Iburi. (b) Jiuzhaigou.

in “known domains” (i.e., Iburi and Jiuzhaigou) was maintained

at 1000 by way of random selection. A 7:3 ratio is applied

to split the 1000 samples into training and testing datasets.

Two benchmark models and three multidomain models were

designed (see Table V) in accordance with the different propor-

tional compositions of the training dataset samples. The initials

indicate the abbreviation of the domains (Ib and J) and the

following number indicates the sample number of the respective

domains accounting for the entire training dataset (700, 200, 500,

and 350).

2) Parameter Setting: The proposed network was imple-

mented on the PyTorch framework as a backend on the Windows

platform with a 4 GB GeForce RTX 3080 Laptop graphics card.

A batch size of 5 was chosen, and an Adam optimizer was

employed with an initial learning rate of 10−4. The model with

the lowest validation loss during the training process was chosen

to validate the model’s accuracy in the testing area.

B. Comparisons of Landslide Recognition Performance

in Benchmark Model

To validate the improved performance of the proposed ResU-

SENet over the classical ResU-Net, the Ib700 and J700 detectors

were trained as benchmark detectors in Iburi and Jiuzhaigou,

based on the ResU-Net and ResU-SENet models, respectively.

Table VI details the results of the corresponding testing samples.

Fig. 5 compares the robustness of ResU-Net and ResU-SENet

for Iburi and Jiuzhaigou.
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Fig. 6. Landslide identification results of trained ResU-Net and ResU-SENet
on Iburi testing datasets. Red boxes show differences in results.

The results show that the trained ResU-Net and ResU-SENet

models achieve good performance in the Iburi and Jiuzhaigou

datasets, which means that most landslides are correctly identi-

fied with high precision—in excess of 87.66% and 78.80%, re-

spectively. Meanwhile, the proposed ResU-SENet outperforms

ResU-Net in F1-score, Recall, MCC, and IoU metrics. Recall is

notably increased by 5.93% and 7.51% for Iburi and Jiuzhaigou,

and IoU is notably enhanced by 3.44% and 2.84%, respectively.

Furthermore, the proposed ResUSENet retains a noticeable

balance between precision and recall, with differences between

the two indices of 3.98% and 0.61% for Iburi and Jiuzhaigou,

respectively. Some of the landslide identification results for the

Iburi and Jiuzhaigou testing datasets are shown in Figs. 6 and 7.

It is observed that ResU-SENet captured some landslide details

more accurately, with the majority of small-area landslides and

ambiguous landslide boundary pixels being identified. This is

also the reason for the significant improvements in recall and

IoU.

C. Comparisons of Landslide Recognition Performance

for Multidomain Model

The performance of three constructed multidomain models

was compared against benchmark models for Iburi and Ji-

uzhaigou, respectively. Tables VII and VIII reveal the effect of

sample proportion variation on landslide identification accuracy

for Iburi and Jiuzhaigou, respectively. Using Table VII, we

ranked the landslide identification performance of models in

Iburi from highest to lowest for both ResU-Net and ResU-

SENet: Ib500J200 ≥ Ib700 > Ib350J350 > Ib200J500. The

landslide extraction capabilities of the Ib500J200 and Ib700

models are almost identical and, for the ResU-Net model, the

accuracy metric of the Ib500J200 model is even slightly higher

than that of the Ib700 model. Ib350J350 model achieved almost

Fig. 7. Identification results of trained ResU-Net and ResU-SENet on Ji-
uzhaigou testing datasets. Red boxes show differences in results.

TABLE VII
LANDSLIDE IDENTIFICATION RESULTS OF DIFFERENT MODELS IN IBURI

TABLE VIII
LANDSLIDE IDENTIFICATION RESULTS OF DIFFERENT MODELS IN JIUZHAIGOU

equal performance to Ib700 model based on ResU-Net. The

Ib200J500 model exhibits the lowest performs, especially with

the ResU-SENet model, with a 16.38% decrease in recall and a

0.1018 decrease in F1-score compared to the Ib700 model. We

suspect that the insufficient number of Iburi samples caused the

model to fail to fully learn the local environment characteristics.

From Table VIII, the performance of models for Jiuzhaigou,

based on the ResU-Net model, was ranked from highest

to lowest: Ib200J500 > Ib350J350 ≥ J700 > Ib500J200.

Compared to the J700 model, the F1-score, MCC, recall,

and IoU of the Ib200J500 model were improved by 0.0436,

0.0157, 3.94%, and 2.66%, respectively. For the ResU-SENet

model, the performance of models from highest to lowest was
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Fig. 8. Performance of ResU-Net and ResU-SENet models with different
models in Jiuzhaigou and Iburi. First row shows results for Iburi area and second
row shows results for Jiuzhaigou area. (a) and (d) Ib500J200 model. (b) and e)
Ib350J350 model. (c) and (f) Ib200J500 model.

J700 > Ib200J500 > Ib350J350 > Ib500J200. The J700 bench-

mark model exhibited the highest landslide extraction perfor-

mance. The Ib200J500 model exhibited a slightly inferior perfor-

mance than the J700 model, with F1-score, MCC, recall, and IoU

decreasing by 0.0175, 0.0194, 1.99%, and 2.41%, respectively.

Recall of the Ib500J200 model decreased by 0.1233 compared

with the J700 model, indicating an omission error due to the

insufficient number of training samples for Jiuzhaigou.

To verify the effect of SE module embedding on the perfor-

mance of the multidomain model, we compared the performance

changes in the ResU-Net and ResU-SENet models based on dif-

ferent models, as shown in Fig. 8. Interestingly, from Fig. 8, we

noted almost equal performance of ResU-Net and ResU-SENet

in multidomain models, but no significant improvement in the

two networks in a multidomain model.

Overall, we can conclude the following: 1) Sample mixing ra-

tio determines the identification performance of the multidomain

model. When testing the domain in which the corresponding

training sample accounted for the dominant proportion in the

multidomain model, the model gave a superior performance to

the benchmark model—in other words, the Ib500J200 model

outperforms the Ib700 model in Iburi while the Ib200J500 model

outperforms the J700 model in Jiuzhaigou. Combining half

the number of foreign domain samples (50%) with half of the

local samples (50%) maintains almost the same identification

performance as if trained entirely with local samples based on

ResU-Net. 2) The overall landslide identification performance

of the ResU-SENet embedded with the SE module in the mul-

tidomain model was not significantly improved. The effect of

the sample on model performance was greater than the effect of

model structure on model performance.

D. Model Generalization Performance

To test the generalization performance, the models trained

in the above experiments were directly employed to predict

landslides in a completely new geographic position (Palu), as

well as some challenging scenes with different land cover types,

landslide triggers, imaging models, and spatial distribution.

Fig. 9. Quantitative comparisons of accuracy in Palu. (a) Different models
tested on ResU-Net. (b) Different models tested on ResU-SENet.

TABLE IX
LANDSLIDE IDENTIFICATION RESULTS OF DIFFERENT MODELS IN PALU

Fig. 10. Results of applying multidomain models to Palu. (a) Pre-event image.
(b) Postevent image. (c) Ground truth. (d) Identification result of ResU-SENet
with Ib200J500 model.

First, we predicted co-seismic landslide in Palu. From Fig. 9

and Table IX, we found that multidomain models exhibit signifi-

cantly improved performance over the Ib700 and J700 models in

Palu, with Ib200J500 models based on ResU-SENet showing the

best performance, with an F1-score of 0.6875. Fig. 10 shows the

landslide identification ability of Ib200J500 model in unknown

domains.

Upon comparing the highest-performing multidomain model

(Ib200J500) in the Palu region, based on the ResU-Net and

ResU-SENet models, respectively, we can see from Fig. 11 that

the ResU-SENet model with an embedded channel attention

mechanism can improve model landslide identification perfor-

mance to some extent.

Second, three challenging scenes were selected for landslide

prediction. The Baige landslide was triggered by recurring rain-

fall, with the images captured in summer and autumn, respec-

tively. The Big Sur landslide was triggered by loose soil and

rock splitting and the images were obtained from Landsat 8.
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Fig. 11. Performance of Ib200J500 model based on ResU-Net and ResU-
SENet models in Palu.

Fig. 12. Landslide identification result in challenging dataset. The first row is
pre-event images, the second row is postevent images, and the third row is the
identification results.

The Sedongpu valley landslide was triggered by rainfall and the

images selected were from the winter season. The identification

result of the Ib200J500 model based on ResU-SENet is shown

in Fig. 12. The F1-score for the Baige, Big Sur, and Sedongpu

landslides were 0.7247, 0.6709, and 0.6594, respectively.

At the same time, we found that model performance on

unknown domains was biased toward higher precision and low

recall, which was similar to observations from other DL studies

undertaken within the field of multidomain learning and domain

generalization [27], [47]. This means that areas identified as

landslide areas can be trusted with high confidence; however, the

inventory was not complete as it also omitted some landslides.

This was not a poor result as it accurately mapped landslides

without any prior training in this particular area. An algorithm

that can rapidly generate the first map of landslide distribution

would be of immense value to decision-makers when planning

relief operations.

TABLE X
LANDSLIDE IDENTIFICATION RESULT COMPARED WITH OTHER MODELS

V. DISCUSSION

A. Advantages of Proposed ResU-SENet

We obtained satisfactory landslide identification results for

Iburi and Jiuzhaigou using freely accessible Sentinel-2 images

and DEM data. Compared with previous work [31], [48], [49],

our method has greater potential in co-seismic landslide inven-

tory mapping. Specifically, it is noted that our approach achieved

an F1-score of 0.7876 in the Jiuzhaigou study area with the

J700 model based on ResU-SENet and that Yi and Zhang [50]

achieved 0.7650 using RapidEye images with spatial resolution

of 5 m. In Iburi, the Ib700 model based on ResU-SENet obtained

an F1-score of 0.8530 while Zhang et al. [51] obtained 0.8288

using Planet Satellite images with a spatial resolution of 3 m.

This further demonstrates that our model performs well under

medium-resolution images. By comparing with several state-

of-the-art semantic segmentation model, including CGNet [52],

LANet [53], and MACU-Net [54], our proposed ResU-SENet

performs best both the Iburi and Jiuzhaigou dataset as presented

in Table X. LANet, MACU-Net, and ResU-Net were overall

higher than CGNet in all metrics. This is likely due to the fact that

CGNet is a light-weight model with less than 2 M parameters.

Gradient-weighted class activation mapping uses the gradi-

ents of particular classes flowing into the final layer to generate

an attention map that highlights the important regions in predict-

ing that class [55]. We selected some of the landslide samples

from Jiuzhaigou and Iburi and visualized the last feature maps

predicted by CGNet, LANet, MACU-Net, ResU-Net, and ResU-

SENet for comparison. As shown in Fig. 13, the landslide areas

were precisely located using the MACU-Net, ResU-SENet, and

ResU-Net. Heat value shows a spatial gradient descent from the

landslides focus to the edge and background. The heat value of

landslides based on ResU-SENet is more intense and focused

than other models, further indicating the superior performance

of ResU-SENet in landslide identification.

The reason why this study has focused on the channel attention

mechanism without considering the spatial attention mechanism

is that the original semantic segmentation network is well-

focused on spatial information and can realize the extraction

of landslide spatial information [56]. We conducted experi-

ments integrating the Convolutional Block Attention Module

(CBAM) [57] into ResU-Net, which focuses on both channel
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Fig. 13. Heatmaps for landslide samples.

and spatial two dimensions. Unsurprisingly, ResU-Net embed-

ded with CBAM showed no significant improvement in accu-

racy compared to ResU-SENet. Considering the efficiency and

complexity of the model, we selected ResU-SENet for landslide

identification.

We found that overall landslide extraction accuracy in Ji-

uzhaigou to be lower than that of Iburi. In Iburi, landslide areas

account for 5% of the total study area while, in Jiuzhaigou,

landslide areas occupy 1.5% of the entire study area. This

small volume of positive samples makes training the landslide

identification model in Jiuzhaigou more difficult.

B. Advantages of Constructing Multidomain Models

We proposed the idea of replacing the mostly local domain

annotated samples with foreign domain annotated samples to

construct multidomain models. Under such conditions, if the

multidomain models could maintain comparable, or even exces-

sive, landslide extraction capabilities to the benchmark model,

it would substantially reduce the number of samples and effort

required to annotate new labels in new co-seismic areas.

Three attempts were made at the sample mixing ratio of the

local domain and foreign domain: 1:6, 2:5, and 1:1. When the

substitution number of foreign domains was 600, the landslide

model performance dropped significantly in the local domain.

F1-scores were 0.2341 and 0.3929 when applying the Ib100J600

and Ib600J100 models on Iburi and Jiuzhaigou, respectively.

As the extraction accuracy was poor, we did not mention this

ratio above. When the substitution number of foreign domains

was 500, the performance was slightly inferior to that of the

benchmark model (i.e., Ib700 and J700), but is a noticeable

improvement compared to 6:1. Performance was almost equal

to the benchmark model when the ratio of samples was half for

each of the two regions. This potentially indicates that, when

the substitution ratio is appropriate, the model can better learn

different landslide characteristics, topographic environments,

imaging conditions, and illumination conditions.

It is estimated that an average of 30 s is required to label a

landslide in an RS image. In other words, for domains with a

large number of landslides, such as Iburi, if half of the samples

from the Iburi domain were replaced with samples from the for-

eign domain where landslide-annotated samples already exist,

and the equal identification performance was maintained as if

trained entirely with Iburi samples, ∼30 hours would be saved.

It should be noted that this is only for one area of landslide

inventory mapping. We believe that the multidomain models

will be hugely practical in landslide emergency disasters.

In addition, the experiment showed the landslide extrac-

tion capacity of ResU-Net and ResU-SENet in Iburi and Ji-

uzhaigou to be almost equal in multidomain models. As shown

in Fig. 8(a)–(f), their evaluation metrics almost overlap. In this

case, we believe that training data is more important than the

models. Multidomain models substitute half (50%) or even more

(72%) of training samples in the local domain with foreign

domain samples, implying the lack of local domain training

samples in DL. Therefore, the results are identical for both

models. It is worth mentioning that adding a small number

of foreign domain samples to the local domain model could

enhance the landslide identification result in the local domain. It

seems that including a certain number of foreign samples exerts

a positive impact because it increases the diversity of samples.

C. Relationship Between Model Generalization

and Data Distribution

In this subsection, we mainly discussed the difficulty of model

generalization and the connection between model generalization

and data distribution.

First, landslide exhibits notable variation in images, resulting

in a high intraclass variance across geographical regions [23].

Fig. 14(a) shows several landslide samples from the study area

with different shapes, hues, and land cover types. Second, the

change detection of co-seismic landslides is also influenced by

other change scenarios, including illumination, the season of

image acquisition, and land cover changes that are similar to

landslides. We select several samples from our study areas, of

which Fig. 14(b) shows the changes from woodland or cultivated

land to bare land and seasonal variations. Third, by comparing

the DEM of different cases, it can be found that there are

obvious topographical differences [see Fig. 14(c)]. For an island

like Iburi, the elevation ranges from 635 to 0 m, whereas for

Jiuzhaigou, located in southwest China, the corresponding aver-

age elevation is 3295.9 m. These all pose significant challenges

for model generalization ability.

In the experiment of model generalization performance, the

Ib200J500 model performs best in the experiments at Palu,

potentially indicating that the Ib200J500 model data distribution

is more similar to Palu. Maximum mean discrepancy (MMD)

is often used to measure the similarity or variability of data

distribution between two domains [58]. We suppose that there

exists source data satisfying the distribution X(s) and target

data satisfying the distribution X(t), H denotes the reproducing
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Fig. 14. Challenges of co-seismic landslide identification. (a) Differences in
landslide samples from different study areas. (b) Effects of land cover change
and seasonal variation on landslide change detection. (c) Comparison of DEM
in different study areas.

TABLE XI
RESULTS OF MMD BETWEEN PALU AND TRAINED MODELS

kernel Hilbert space (RKHS) and ∅ (·): X→H denotes the

nonlinear feature mapping function of the original feature space

mapped to RKHS. X(s) and X(t) in the MMD of RKHS can be

expressed as

DMMD = ‖
1

N

N
∑

i=1

∅
(

X(s)
)

−
1

M

M
∑

i=1

∅
(

X(t)
)

‖H . (8)

If the distributions of two domains tend to be identical and

the RKHS is universal, MMD tends to be 0. This also means

that the model could have an ideal generalization performance

in the unknown domain. In this study, we directly use the models

constructed from the Iburi and Jiuzhaigou samples as the source

domain and from the Palu samples as the target domain, and take

the bands corresponding to each region as input. The results of

MMD between different models and Palu are shown in Table XI.

We can see from the calculated results in Table XI that the

MMD value between the Ib200J500 model and Palu samples

achieves minimum values, with the exception of post-NDVI,

post-B2, and post-B3 bands. This is also consistent with our

experimental result that Ib200J500 performs better in Palu.

In summary, the model generalization performance is strongly

related to the similarity between the source data distribution and

target data distribution. In the landslide identification task of

the unknown domains, calculating the MMD could provide a

guideline for the model selection.

TABLE XII
RESULTS OF MMD

Fig. 15. Landslide identification results generated by Ib700 model based on
ResU-SENet.

D. Utilizing Data Distribution Differences to Guide Luding

Earthquake Landslide Mapping

On September 5, 2022, an Ms 6.8 earthquake struck Luding

County, Ganzi Prefecture, Sichuan Province, China.

We first acquired Sentinel-2 images and DEM based on the

GEE platform. Then, 4103 co-seismic landslides covering an

area of 589 km2 were interpreted to obtain a landslide mask

of the Luding area, by using the pre- and postevent Sentinel-2

images and Google Earth high-resolution images.

Considering the close geographic location and similar topo-

graphical features between Jiuzhaigou and Luding, the model

trained in Jiuzhaigou was indiscriminately used to predict land-

slides in LD. However, to validate the observation that data

distribution affects the model generalization ability proposed

in this study, the MMD was also calculated. Table XII shows

that the data distributions from Iburi and LD are more simi-

lar than those of Jiuzaigou and LD. Therefore, the Ib500J200

and Ib700 models were applied to landslide identification

in Luding.

We found that the performance of the Ib700 model based

on ResU-SENet obtained a recall of 68.09% and an F1-score

of 0.7433 and performed best. The Ib500J200 model based on

ResU-SENet obtained a recall of 70.23% and an F1-score of

0.6741.

Fig. 15 presents the landslide identification results generated

by Ib700 model based on ResU-SENet for the Luding area.

From the four subregions (marked as a–d) in Fig. 15, we found

most mountain landslides were correctly identified. Compared

with previous work, Dai et al. [59] employed an autonomous
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aerial vehicle and GF-6 remote sensing images for co-seismic

landslide identification in Moxi Town, Luding County and ob-

tained an F1-score of 0.83 and recall of 79.8%. Our results

are still comparable, as well as it being based on free-access

medium-resolution RS images.

E. Limitations and Future Study

In this work, we perform landslide identification utilizing

multichannel datasets based on DL method. We emphasized

the importance of each band for the occurrence of landslides

through the SE channel-wise attention mechanism but did not

obtain specific weight values. Therefore, in the future, we will

focus on the interpretability of the model. In the experiment of

comparisons of landslide recognition performance for multido-

main model, the sample substitution ratio is not strictly chosen,

the relationship between the substitution ratio and the model

performance will be further investigated.

VI. CONCLUSION

This article presents a generalized deep-learning-based

method for the rapid mapping of co-seismic landslides, utilizing

freely accessible Sentinel-2 images and DEM. The process of

generating landslide training samples based on the GEE cloud

platform and ArcGIS platform was proposed and multichannel

landslide datasets of four study areas were created. Considering

the contribution of channels to the occurrence of landslide was

different, a new semantic segmentation model called ResU-

SENet was proposed. It could adaptively adapt the weights of

each band and outperform the CGNet, LANet, MACU-Net, and

ResU-Net.

Confronted with the problem that when a deep neural network

performs the landslide extraction task from a new domain or data

distribution, its performance will be greatly reduced. We utilize

multidomain learning to improve the model generalization abil-

ity. From the experimental results, the multidomain Ib350J350

model almost maintains identification performance at the level

achievable if trained entirely with local sample models (Ib700

and J700 models). This finding potentially reduces the number

of new training samples required by 50%. Meanwhile, we found

that when testing domains where the corresponding training

sample accounts for a dominant proportion with the multido-

main model, the model outperforms the benchmark model. For

instance, when employing the Ib500J200 model to identify land-

slides in Iburi, the result bettered that of the Ib700 model. Hence,

adding a small number of foreign domain samples is equal to data

augmentation. Applying models trained by Iburi and Jiuzhaigou

samples directly to completely unknown domains, F1-score

reached 0.6875 in Palu, which implies the good generalization

capability of our model. Notably, by analyzing the connection

between model generalization and data distribution, the Ib700

model trained on ResU-SENet achieved an F1-score of 0.7433

for the Luding co-seismic landslide identification application.

The calculation of MMD provides a guideline for the model

selection.

A co-seismic landslide extraction model with generalization

ability solves the key bottleneck in landslide emergency map-

ping. Further research will combine GEE or Google AI online

platforms to provide favorable support for rapid co-seismic

landslide mapping in unknown domains.
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