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Domain-Incremental Learning for Remote Sensing
Semantic Segmentation With Multifeature
Constraints in Graph Space

Wubiao Huang ™, Mingtao Ding

Abstract— The use of deep learning techniques for semantic
segmentation in remote sensing has been increasingly prevalent.
Effectively modeling remote contextual information and integrat-
ing high-level abstract features with low-level spatial features are
critical challenges for semantic segmentation tasks. This article
addresses these challenges by constructing a graph space reason-
ing (GSR) module and a dual-channel cross-attention upsampling
(DCAU) module. Meanwhile, a new domain-incremental learning
(DIL) framework is designed to alleviate catastrophic forgetting
when the deep learning model is used in cross-domain. This
framework makes a balance between retaining prior knowledge
and acquiring new information through the use of frozen feature
layers and multifeature joint loss optimization. Based on this,
a new DIL of remote sensing semantic segmentation with multi-
feature constraints in graph space (GSMF-RS-DIL) framework is
proposed. Extensive experiments, including ablation experiments
on the ISPRS and LoveDA datasets, demonstrate that the
proposed method achieves superior performance and optimal
computational efficiency in both single-domain and cross-domain
tasks. The code is publicly available at https://github.com/Huang
WBIll/GSMF-RS-DIL.

Index Terms— Cross attention, domain-incremental learning
(DIL), graph space reasoning (GSR), remote sensing image,
semantic segmentation.

I. INTRODUCTION

EMANTIC segmentation of remote sensing images is a
key technology for ground object classification and a
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fundamental task in the field of remote sensing. With the
rapid development of sensors such as optics, radar, and 3-D
scanners, multimodal data such as images and point clouds
have become the forefront of remote sensing, especially in
target segmentation tasks [1], [2]. The performance bottleneck
of single-modal semantic segmentation can be a breakthrough
by integrating the advantages of various data sources, so as
to obtain more diverse feature information. In recent years,
solving remote sensing image problems by intelligent methods
has become a hot research focus [3], [4]. Deep learning, as a
data-driven technique, has been successfully applied in the
fields of land-use change [5], [6], land cover mapping [7], [8],
and landslide hazard identification [9], [10].

An inherent challenge in semantic segmentation tasks is that
when individual pixels are considered in isolation, the pixels
are difficult to classify due to the local image being fuzzy
and noisy. Therefore, the model must be able to efficiently
capture contextual information. Commonly used approaches
are deep learning based on convolutional networks [11], [12].
However, a single convolutional layer can only capture local
information due to the inherent limitation of its receptive
field. The current approach that aggregates global context
information by stacking multiple convolutional layers or using
dilated convolutions [13] performs poorly on small objects.
Some researchers have addressed this shortcoming by fusing
multiscale features within the network [14], [15] or using
transformer layers to model long-range dependencies [16],
[17]. Recently, self-attention-based methods [18], [19] have
been used to learn affinity maps for spatial locations and prop-
agate information to neighboring spatial locations. However,
pixels of the same object are not necessarily distributed in
the same region, making it difficult to establish dependencies.
To solve this issue, we project the feature representations into
graph space, and we use the graph convolutional networks
(GCNs) to effectively model contextual information for seman-
tic segmentation through global relational inference.

Attention-based strategies have been widely used for deep
learning feature fusion. Li et al. [20] efficiently fused spatial
and spectral domains for hyperspectral image enhancement
by constructing a cascaded attention module. Xia et al. [21]
proposed a two-stage hierarchical cross-attention transformer
module to fuse point-wise and voxel-wise features in a point
cloud scene. To better leverage both deep and shallow fea-
tures, we construct a dual-channel cross-attention upsampling
(DCAU) module to replace the conventional direct upsampling

1558-0644 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on October 31,2024 at 00:50:28 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2856-9859
https://orcid.org/0000-0003-1210-9188
https://orcid.org/0000-0003-0886-4324

5645215

(a) Potsdam
Vaihingen
upP-v

ToU (%)

2 J !
10
; 1 I

mioU Impervious
surfaces

Building  Low vegetation  Tree Car Clutter

Classes

Urban
Rural

. (b)
50
3
=40
=

30

20

10 “

mloU Road Water

Background  Building
Classes

Barren Forest  Agricultural

Fig. 1. Catastrophic forgetting in deep learning models. (a) ISPRS datasets
and (b) LoveDA datasets. The light rectangle represents the mloU values
directly trained on a single domain and the IoU values of each class, while
the dark rectangle represents the segmentation results of the second domain
directly using the model trained on the first domain.

summation method, achieving richer and more representative
multiscale feature representations.

In addition, most of the deep learning models are trained
once using specific datasets and are typically domain-specific,
performing poorly when applied to new domains. As shown in
Fig. 1, the prediction results deteriorate significantly when a
model trained on ISPRS Potsdam and LoveDA Urban scenar-
ios is directly applied to new ISPRS Vaihingen and LoveDA
Rural scenarios. Some researchers have proposed to use com-
parative learning to solve the problem of domain adaptation.
Hong et al. [22] designed a high-resolution domain adaptive
network that leverages adversarial learning to bridge the gap
between different scenarios, facilitating effective knowledge
transfer. Shen et al. [23] proposed an unsupervised domain
adaptive method for the cross-domain semantic segmentation
task of point clouds. However, this approach primarily focuses
on the model’s ability on a new task, often leading to a
significant drop in performance on the old task, a phenomenon
known as catastrophic forgetting [24]. This occurs because
the traditional models assume that the data distribution is
smooth, allowing the model to repeatedly see the same data
across tasks. However, with the introduction of data from new
domains, the data distribution becomes non-smooth. Contin-
uous learning from this non-smooth distribution causes new
knowledge to interfere with old knowledge, leading to a rapid
decrease in model performance or even completely forgetting
the previously learned knowledge [25], [26]. In the task of
remote sensing semantic segmentation, different conditions,
such as temporal changes, resolution variations, and weather
conditions, can cause catastrophic forgetting. The simplest
solution to catastrophic forgetting is to retrain the network
parameters using all known data to adapt to distribution
changes. Although retraining from scratch can completely
solve catastrophic forgetting, it is highly inefficient. The emer-
gence of large models and incremental learning has shown the
potential in mitigating this challenge to some extent. Currently,
several remote sensing large models, such as Spectral GPT [27]
and Skysense [28], mainly focus on remote sensing image
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understanding. The research on downstream tasks is in the
early stages because the training of large models is more
demanding on equipment. Therefore, this article focuses on
the incremental learning perspective. Incremental learning
enables the model to learn features from the new domain
without accessing the old domain data while preserving the
performance on the old domain. It should be noted that this
article focuses on the domain-incremental learning (DIL) for
different domains with the same classes, which often occurs
in the field of remote sensing.

To address the above problems, this article proposes a
DIL framework of remote sensing semantic segmentation with
multifeature constraints in graph space (GSMF-RS-DIL). The
primary contributions of this article are as follows.

1) A novel DIL framework of remote sensing image

semantic segmentation with multifeature constraints is
designed. This framework addresses catastrophic forget-
ting in deep learning models without changing the model
architecture by utilizing multifeature constraints loss.
A remote sensing image semantic segmentation model
based on graph space transformation and attention
upsampling is proposed. The graph space reasoning
(GSR) module enlarges the receptive field, enhancing
the modeling of global features. In addition, the DCAU
module effectively leverages the disparity between
high-level and low-level features to capture both global
and local contextual information.
Extensive experiments are conducted on two rep-
resentative datasets for both single-domain semantic
segmentation and DIL to validate the performance of
the proposed method.

The remainder of this article is organized as follows.
Section II introduces the related work in graph-based semantic
segmentation and DIL. Section III describes the details of
the GSMF-RS-DIL framework. The experimental settings are
presented in Section IV. Section V analyzes the experimental
results and Section VI concludes this article.

2)

3)

II. RELATED WORK
A. Graph-Based Semantic Segmentation

Graph-based methods have become very popular in recent
years and demonstrate effectiveness in relational reasoning.
Unlike traditional methods, graph-based methods need to con-
struct a graph structure, followed by feature aggregation within
the graph space. Currently, graph-based semantic segmentation
networks are mainly divided into two types: one is the graph
neural network combined with super-pixel segmentation, and
the other is constructing a graph neural network in the feature
space.

The former divides an image into many super-pixel blocks,
where pixels within each block exhibit strong correlations.
This method utilizes super-pixels instead of pixels as nodes,
significantly reducing computational complexity. For instance,
He et al. [29] integrated this approach with a multiscale
DenseAtrousCNet, proposing a new two-stream deep neural
network for remote sensing image semantic segmentation.
Liu et al. [30] used convolutional neural network (CNN)
and GCN branches to generate complementary spectral—spatial
features at both pixel and super-pixel levels for hyperspec-
tral image classification. Jian et al. [31] constructed spectral
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and spatial correlation graph structures based on super-pixel
segmentation results and hyperspectral images and proposed
the uncertainty-aware graph self-supervised learning method
for unsupervised contrastive learning. Despite significantly
reducing graph structure complexity, this approach often
necessitates preliminary super-pixel segmentation and final
results influenced by the segmentation accuracy.

The latter transforms features extracted by the convolutional
network into graph space, performs graph convolution, and
then recovers to the original space. For instance, Zhang
et al. [32] achieved this transformation by modeling spatial
relationships between pixels and interdependencies between
channel dimensions. Chen et al. [33] introduced a global
reasoning unit, which aggregates features globally over coor-
dinate space and projects them into an interaction space
for efficient relational reasoning, subsequently back-projecting
relationship-aware features to the original coordinate space.
Li et al. [34] proposed an improved Laplace formulation
for graph inference. In addition, Lu et al. [35] constructed
a graph model by using feature map pixels as vertices and
defining region relationships as edges based on distances
between features and self-attention mechanisms to establish
associations and uncover object relationships. Jiang et al. [36]
used K-nearest neighbors to construct the graph structure
based on the assumption that two pixels may belong to the
same category if they are similar in appearance and close in
metric distance. Liu et al. [37] introduced the self-construct
graph module, seamlessly integrating GNN and CNN by
transforming the features into latent space through an encoding
module and learning node similarities via a decoding module.
This article adopts the idea of graph space transformation from
the latter.

B. Domain-Incremental Learning

Incremental learning consists of three primary scenarios:
task-incremental learning (TIL), DIL, and class-incremental
learning (CIL) [38].TIL involves tasks with nonintersecting
data labeling spaces, where task identifiers are provided during
both training and testing. DIL entails tasks with the same
data labeling spaces but differing input distributions. CIL tasks
have disjointed data labeling spaces, and task identifiers are
provided only during training. Currently, most of the research
focuses on CIL tasks [39], [40], and fewer studies addressing
DIL. This article primarily addresses the DIL problem.

The incremental learning methods are primarily divided
into replay-based methods, regularization-based methods, and
parameter isolation-based methods [25]. Replay-based meth-
ods are storing a portion of old data or training additional
generators to generate pseudo-data for co-training with the
new data [41], [42], which can generate storage pressure.
Regularization-based methods utilize knowledge distillation or
regularization terms in the loss function to balance the old
and new tasks. This approach does not require previous data
storage and extensive parameter introduction [43] but may
result in suboptimal model convergence and poor performance.
The LwF method proposed by Li and Hoiem [44] is one of
the most representative methods and is currently the most
commonly used. Parameter isolation-based methods usually
freeze critical model parameters from old tasks and allow the
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Fig. 2. Overall framework of GSMF-RS-DIL. The graph consists of two
parts with shared weights. The gray boxes represent input and output data.
The yellow trapezoid represents the single-domain training stage composed of
trainable parameter networks, while the blue and orange represent the frozen
and trainable parts of the DIL stage, respectively.

model to introduce new parameters for subsequent tasks [45],
[46]. This approach typically increases parameter count and
computational effort.

The GSMF-RS-DIL framework proposed in this article
combines parameter isolation and regularization methods. This
hybrid approach has shown promising results in recent studies.
For example, Garg et al. [45] introduced a domain resid-
ual fitness block and distillation loss on top of lightweight
efficient residual factorized ConvNet to solve the problem
of DIL for semantic segmentation in computer vision. Rui
et al. [26] applied this approach to the domain-incremental
problem in remote sensing images. Michieli and Zanuttigh [47]
incorporated distillation loss at different locations based on
the DeepLabV2 network and explored the effect of different
freezing parameters. In addition, Douillard et al. [43] and Kirk-
patrick et al. [48] investigate how to improve the performance
of DIL from the view of distillation loss function constraints.
Beyond computer vision, this approach has also been applied
in fire recognition [46], change detection [49], and medical
segmentation [50].

III. METHODOLOGY

A. Overview

The overall flowchart of the GSMF-RS-DIL framework
proposed in this article is shown in Fig. 2. Assuming that
there are two different domains, 7 and T + 1, the cor-
responding data samples for each domain are denoted as
Image; and Imager,,, and the corresponding labels are
Label; and Labely, ;. The classes in Labelr and Labelr
remain consistent.

First, the graph space semantic segmentation model is
trained for domain 7. To model performance, an auxiliary
head loss function is added based on the original cross-entropy
loss function [15]. Therefore, the prediction result of domain
T includes the main output Predicty and the auxiliary output
Predict,,x. Subsequently, the DIL model is trained on domain
T +1 to obtain the output Predicty;. The incremental learning
model consists of two branches: the first branch freezes the
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model M trained on the first domain, while the second branch
uses the weights of the model M as the pretraining weights and
continues training. In addition, the encoder’s first-stage feature
extraction process is frozen in the second branch. During the
entire DIL process, only the sample data and labels from
domain 7 +1 are used for small batch training, and the feature
layer loss function Lieyyre, cross-entropy loss function L., and
output layer distillation loss Ljegjis jointly constrain the training
process.

The proposed graph space attention upsampling feature
pyramid network (GS-AUFPN) adopts an encoder—decoder
architecture, and the detailed network structure is shown in
Fig. 3. The model uses the feature pyramid [51] as the main
architecture, incorporating the classical ResNet-101 model as
the encoder to obtain the outputs of four stages (x;, X2, X3, X4).
A 3 x 3 convolution is applied to the deepest feature x4
according to (1), followed by global feature modeling using
the GSR module to obtain x}. Feature channel compression is
performed using 1 x 1 convolution for each of the other three
stages of features, resulting in (x{, x5, x5, x;) with the same
number of feature channels. In addition, the original simple
upsampling aggregation module is replaced with a DCAU
module to synthesize the recovered image sizes of the features
at each stage, yielding the feature map y;. The decoder output
y1 is obtained after 1 x 1 convolution and Softmax operation
on the feature map y; according to (2), which is the number
of channels matching the number of classes

, G(Conv(x;, 3)),i =4
X = . (D
Conv(x;, 1),i =1,2,3
yi = Softmax (Conv(y;, 1)). (2)

B. GSR Module

To better model the global contextual relationships, this arti-
cle transforms traditional feature graphs into a graph feature
space and reasons about relationships on the graph. Inspired
by Chen et al. [33], we propose the GSR module. As shown
in Fig. 4, this module consists of three parts: projection to
graph space, graph space convolution, and graph space back
projection. To describe the process, we predefine the input
deep features F with size (B, C, H, W), where B is the batch
size, C is the number of channels, and H and W are the height
and width, respectively. N is the number of graph nodes, and
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C’ is the length of graph node features. The specific process
is as follows.

1) Projection to Graph Space: The graph structure consists
of nodes, edges, and node features, of which the most critical
is the construction of graph nodes. For the input deep feature
F € RBEXCxHXW the feature F is projected to the graph
space S € REXN*C by constructing a projection function
f() to obtain N nodes of length C. f(-) consists of a
region aggregation function ¢(-) and a dimension compression
function 6(-). To construct a learnable projection function,
we model ¢(-) and 6(-) using 1 x 1 convolutional layers,
respectively, computed as follows:

¢(F) = reshape(Conv(F, N, 1), (B, N, HW )) 3)
0(F) =reshape(Conv(.7—", c, 1), (B,HW, C/)) 4
S = f(F) = p(F)-0(F). )

2) Graph Space Convolution: To model the relationships
between nodes and update the feature vectors, we apply the
efficient graph convolution proposed by Kipf and Welling [52].
Specifically, the graph convolution process is defined as
follows:

K= 08w (6)

where K € RE*NXC' g the feature after graph convolution,
Q 1is the node neighborhood matrix of size N x N, andW is
the state update weight.

In the actual modeling process, the implementation is car-
ried out by 1-D convolution in both the feature and node
directions, as shown in the following equation:

@)

3) Graph Space Back Projection: For K e REXCN after
graph convolution, it needs to be backprojected to the original
feature space to facilitate the subsequent decoding module.
Similar to the “Projection to graph space,” the feature 7°
is backprojected to the original space xj € REXCXHXW py
constructing a projection function g(-). g(-) computes the dot
product of K and ¢(F) and recovers the feature channel from
C’to C by a1l x 1 convolution, computed as follows:

K = ConvID((ConvID(S) +8)7)".

x}, = g(K) = Conv(reshape(K - ¢(F)), C, 1) 3)

where ¢(F) is the reuse of the region aggregation function
in the first step, because it retains the positional coding
information of the graph nodes and the original feature space,
and ¢(F) reuse can reduce the number of parameters.

C. DCAU Module

To better exploit the intrinsic relationship between shallow
and deep features, this article improves the feature fusion
module for sampling features on the feature pyramid by
introducing DCAU module.

As shown in Fig. 5, the module consists of two
attention branches, which process the input low-level fea-
tures (X c RBXCxWxHYy  and high-level features
(Y € REXCxW/x(H/D)  respectively. First, the high-level
features ) upsampling match the size of X, resulting in
V' eREXCxWxH Then, global average pooling (GAP) and two
1 x 1 convolution operations are applied to generate the
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represent the features of different stages.

global context information of the deep features, resulting in
VYCeRB*CxIxI For X, the average and maximum pooling are
first performed, followed by a convolution operation to com-
press the channel dimensions, yielding the edge information
spatial attention (SA) map XS e REXIXWxH  gubsequently,
V€ and XS are multiplied with X and ), respectively,
to obtain X€ and V5. Finally, X € Y8 X, and Y’ are summed
to obtain the final fused feature map Z. The specific formulas

are as follows:
C
V¢ = Sigmoid (Conv (Conv (GAP(J/), =, 1), C, 1>)
r

)]
X% = Sigmoid(Conv(Concatenate
X (Maxpool(X), Avepool(X)), 1, j)) (10)
Z=X4Y+X Y =XV + (X x))
+ (V' x x%) (11)

where r is the channel attenuation coefficient, affecting the
feature learning capability, and j is the convolution kernel
size, determining spatial information aggregation ability.

D. Loss Functions

As shown in Fig. 2, the loss function used in the GSMF-
RS-DIL framework is mainly divided into two parts, and
the training and optimization strategies for each stage are
independent of each other.

The first part is the semantic segmentation loss function Lgg,
used for optimizing the graph space semantic segmentation
model over domain 7. It consists of L. and L,

ESS = cce + )\caux

Lo = _ ! Z Z Y log §

sfl k=1

(12)

13)

(B, C",N)

Node dimension convolution

—» 1X1Conv  — reshape

GSR module architecture, including projection to graph space, graph space convolution, and graph space back projection. The different colors
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Fig. 5. Detailed architecture of the DCAU module.

where s €[1,2,..., S], S is the number of sampling points, and
k is the number of object class. )7 " is the one-hot value of
the sample’s prediction result, and y(") is the true label value
corresponding to this sample. A is the weight parameter for
balancing L,x and is set to 0.4 in this article according to
previous studies.

The second part is the DIL loss function Lpp for model
optimization over domain T + 1. It consists of Lcc, Liogits,
and Acfeature

Lo = Lee + a‘clogits + BLteature (14)
Lo, 90
Liogits = ——= E —log — 15
logits S ; pr Tl g Tl ( )
I s K (s) D)

1 1 X: 1
Licawre = ~ Y =15 KL| =% log ~& 16
feature )i ; S 2 Ly £ T T ( )
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where iel, I is the encoder stage number used for compu-
tation, 7 and 7, are the temperature coefficients of Liogits
and Lyeayres respectively, used to regulate the smoothing
of the probability distribution. KL(-) denotes the computa-
tion of Kullback-Leibler divergence [53]. f}ibk) is the output
logits of the trainable branch, and yl(‘,? is the output logits
of the frozen branch. £}’ is the softmax value of the output
feature map of the trainable branch encoder, and x,-(,i) is the
softmax value of the output feature map of the frozen branch
encoder.  and 8 are the balancing parameters for Lo and
Lieaure Weights.

IV. EXPERIMENTAL SETTINGS
A. Datasets

We evaluate the performance of the proposed framework
by experiments on two well-known open-source datasets:
ISPRS datasets (http://www2.isprs.org/commissions/comm3/
wg4/semantic-label-ing.html) and LoveDA datasets (https://
github.com/Junjue-Wang/LoveDA). We conducted single-
domain semantic segmentation experiments on ISPRS Pots-
dam scene and LoveDA Urban scene and then applied
the trained models to the ISPRS Vaihingen scene and
LoveDA Rural scene for cross-domain incremental learning
experiments.

1) ISPRS Datasets: The datasets include the Vaihingen and
Potsdam scenarios. The Potsdam scene is a typical historical
city with large building clusters, narrow streets, and dense
settlement structures. It consists of 38 remote sensing images
with a spatial resolution of 0.05 m, each sized at 6000 x
6000 pixels. The Vaihingen scene is a small village with
numerous individual buildings and small multistory buildings.
It consists of 33 remote sensing images of different sizes, with
a spatial resolution of 0.09 m. These scenarios have the same
semantic labels: impervious surfaces, building, low vegetation,
tree, car, and background. We used the near-infrared (NIR),
red, and green channels and did not use other data. For the
Potsdam scene, we utilized images with IDs: 2_10, 2_11,
2.12,3.10,3_11,3_12,4_10,4_11,4_12, 5_10, 5_11, 5_12,
6_10,6_11,6_12,6_7,6_8,6_9,7_10,7_11,7_12,7_7,7_8,
and 7_9 for training, and the remaining 14 images are used for
testing. For the Vaihingen scene, we used images with IDs: 1,
3,5,7, 11, 13, 15, 17, 21, 23, 26, 28, 30, 32, 34, and 37 for
training and the remaining 17 images for testing.

2) LoveDA Datasets: The LoveDA datasets [54] are chal-
lenging datasets with complex backgrounds. The dataset
includes Google Earth images acquired in July 2016 from
three cities: Nanjing, Changzhou, and Wuhan. Each image
has a spatial resolution of 0.3 m and a size of 1024 x
1024 pixels. It includes the Urban and Rural scenarios and
is classified into seven classes: buildings, road, water, barren,
forest, agriculture, and background. The dataset provides three
bands: red, green, and blue. The Urban scene training set
comprises 1156 images, and the test set has 677 images.
The Rural scene training set includes 1366 images, with
992 images in the test set.

Fig. 6 shows the mean and variance of the bands for
different classes of these two datasets. The same color scheme
represents the same category, while the same shape indicates
the same dataset. It can be seen that the distribution of different
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Fig. 6. Visualization results of the mean and standard deviation of all classes’
bands in different scenes. (a) ISPRS datasets and (b) LoveDA datasets.

classes within the same scene is more concentrated in the
ISPRS datasets, and the difference between different scenes is
more obvious. Conversely, the distribution of different classes
within the same scene and between different scenes is more
dispersed in the LoveDA datasets.

B. Implementation Details

All experiments were conducted on a Linux PC with
NVIDIA GeForce RTX 4090 24 G GPU installed. All code
was implemented based on the PyTorch deep learning frame-
work. The backbone network utilized the ResNet-101 model
pretrained on the ImageNet dataset. The 7 x 7 convolution
in the input layer was replaced by three 3 x 3 convolutions,
and the last two downsampling operations were replaced by
convolutional layers with dilation rates of 2 and 4. Due to
hardware constraints, the batch size was set to 4.

For single-domain semantic segmentation model training,
the maximum number of iterations was set to 80k for the
ISPRS Potsdam scene dataset and 30k for LoveDA Urban
scene dataset. The AdamW optimizer with weight decay
was used, the initial learning rate was set to 0.0001, and
the weight decay was set to 0.001. A “poly” learning rate
strategy was used, with the formula Ir base_Ir x (1 —
(iteration/max_iteration))P°"®", where base_Ir denotes the ini-
tial learning rate, iteration denotes the current number of
iterations, max_iteration denotes the total number of iterations,
and power was set to 0.9. When training the incremental learn-
ing model cross domains, the maximum number of iterations
was set to 10k. The initial learning rate of the optimizer was
set to 0.00001.

Since the dataset images were too large, we cropped
them to 512 x 512 pixels, with 128 overlapping pixels for
the ISPRS dataset and no overlap for the LoveDA dataset.
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TABLE I
EVALUATION METRICS FOR SINGLE-DOMAIN SEMANTIC SEGMENTATION ABLATION EXPERIMENTS ON THE ISPRS POTSDAM SCENE DATASET

F1/1oU (%)

Impervious Low 04— mF1mloy
. . 0 o, 0

surfaces Building vegetation Tree Car Clutter (%) (%) (%)

Baseline 91.08/83.61 95.73/91.81 83.81/72.13 85.24/74.27 90.82/83.18 42.82/27.25 88.06 81.58 72.04
+ GSR 91.35/84.08 95.83/92.00 84.19/72.70 84.79/73.59 90.66/82.91 55.93/38.82 88.46 83.79 74.02
+ ASPP 91.31/84.01 95.68/91.72 84.27/72.82 84.95/73.84 90.81/83.17 55.03/37.96 88.44 83.68 73.92
+ PPM 91.32/84.02 95.83/92.00 84.22/72.74 85.23/74.26 90.78/83.11 54.06/37.05 88.51 83.57 73.86
+CA 91.32/84.02 95.70/91.76  83.96/72.36  85.02/73.95 90.79/83.13 51.36/34.56 88.32 83.03 73.29
+SA 91.27/83.95 95.77/91.88 83.84/72.17 85.21/74.23 90.77/83.10 48.65/32.15 88.24 82.59 7291
+ DCAU 91.34/84.07 95.70/91.76 84.27/72.81 85.34/74.43 90.93/83.37 51.65/34.82 88.46 83.21 73.54
J];CiS[’JR * 91.55/84.41 95.80/91.94 84.47/73.12 85.10/74.07 90.82/83.19 59.62/42.47 88.72 84.56 74.87

TABLE II

EVALUATION METRICS FOR SINGLE-DOMAIN SEMANTIC SEGMENTATION ABLATION EXPERIMENTS ON THE LOVEDA URBAN SCENE DATASET

F1/IoU (%) 0A mF1 mloU

Background Building Road Water Barren Forest Agricultural (%) (%) (%)

Baseline  52.30/35.41  73.23/57.76  72.20/56.50 74.25/59.05 51.82/34.97 57.41/40.26  15.37/8.33 5446 56.66 41.75
+ GSR 53.60/36.61 75.16/60.21 71.32/55.43 78.19/64.19 49.53/32.92 56.67/39.54 29.78/17.50 56.95 59.18 43.77
+ ASPP 55.06/37.99 75.10/60.13 73.67/58.32 80.74/67.70 43.58/27.86 51.03/34.26 28.21/16.42 56.75 58.20 43.24
+PPM 53.22/36.26  75.79/61.02 71.91/56.14 80.99/68.05 43.81/28.05 56.28/39.16 27.75/16.11 56.75 58.54 43.54
+CA 51.67/34.84 75.87/61.12 73.64/58.27 82.26/69.86 49.57/32.95 59.28/42.13 8.59/4.49 55.06 57.27 43.38
+SA 52.33/35.44 76.06/61.37 72.43/56.78 82.35/70.00 48.15/31.70 58.78/41.63  12.06/6.42 5537 57.45 4333
+DCAU  52.51/35.60 76.52/61.96 73.14/57.65 81.85/69.28 50.55/33.83 57.76/40.61  15.40/8.34 5591 58.25 43.90
BCGEE - 53.27/36.31 76.19/61.53 71.62/55.79 81.21/68.36 48.03/31.60 54.42/37.38 33.22/19.92 5743 59.71 44.41

During training, we used random scaling (with scales of
[0.5,0.75,1.0,1.25,1.5,1.75,2.0]), random cropping, and ran-
dom flipping for data enhancement.

C. Evaluation Metrics

1) Evaluation Metrics on Single-Domain Semantic Seg-
mentation: To comprehensively evaluate the performance of
our proposed model, overall accuracy (OA), mean f1-score
(mF1), and mean intersection over union (mloU) were used
as evaluation metrics. Based on the accumulated confusion
matrix, OA, mF1, and mloU are computed as follows:

lecvzl TPy

OA = — a7
Zk:l TPy + FPy + TN + FNi
1 L2 x Precision; x Recally
mFl = — — (18)
N pa Precision; + Recally,
.. TPy
Precisiony, = ——— (19)
FP, 4+ TPy
TP,
Recall; = —— (20)
FNy + TPy
N N
1 1 TP,
IoU = — IoU; = — 21
e N; oV N;TPk+FPk+FNk @D

where TPy, FP;, TN, and FN; denote true positives, false
positives, true negatives, and false negatives, respectively, for
a particular object indexed as class k. N is the number of
classes.

2) Evaluation Metrics on Cross-Domain Incremental Learn-
ing: Evaluation metrics for multidomain incremental learning
tasks should consider performance both old and new domain.
Therefore, we measure model performance by calculating the
average decrease in the mloU of the incremental learning
model on each domain relative to the corresponding individual
task baseline

1< 1
b
Aoy = B E Anou = B
b=1

where B is the number of domains, A%, - is the change of
mloU on the bth domain relative to the corresponding single
task, mloU,, is the mloU value of the baseline model a
on the bth domain, and mloU,; is the mloU value of the
domain-incremental model d on the bth domain.

XB: mloU, , — mloU, ;

mIan b

(22)
b=1

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Ablation Study and Parameter Analysis of Single-Domain
Semantic Segmentation

1) Ablation Study: In order to validate the performance
of each proposed module, we used the most basic feature
pyramid as a baseline and gradually added the GSR, channel
attention module (CAM), and spatial attention module (SAM),
conducting extensive ablation experiments. In addition, the
GSR module is compared with the commonly used ASPP [15]
and PPM [55] modules. The evaluation metrics of the abla-
tion experiments on the ISPRS Potsdam scene dataset and
LoveDA Urban scene dataset are given in Tables I and II,
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Fig. 7. Visualization results of some test samples for different modules on the ISPRS Potsdam scene dataset.
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Fig. 8. Visualization results of some test samples for different modules on the LoveDA Urban scene dataset.

respectively. Figs. 7 and 8 illustrate the visualization results
for some test samples on the ISPRS Potsdam scene dataset and
LoveDA Urban scene dataset, respectively. Fig. 9 shows the
floating-point operations (FLOPs) and parametric quantities
(Params) for different modules. It can be seen that each
proposed module improves the performance of the model to
some extent. Specifically, our proposed model achieves an
approximate 2.8% improvement in mIoU with only 0.033 G
additional FLOPs and 0.129 M additional Params compared
to the baseline model.

1) Ablation of GSR Module:Compared with the baseline
model, the introduction of the GSR module improves model
performance in both datasets, enhancing the m/oU metric by
approximately 2% in each task. Notably, the GSR module
demonstrates significantly lower FLOPs and Params than
the ASPP and PPM modules while achieving slightly better
performance. This indicates that the GSR module can effec-
tively model the global contextual relationships by converting
features into graph space, thereby reducing computational
complexity without compromising accuracy.

2) Ablation of DCAU Module: Incorporating the DCAU
module results in a model performance improvement of about
1.5%-2.0% over the baseline. The DCAU module consists of
two branches: SA and channel attention (CA). Our analysis
reveals that the inclusion of these branches positively impacts
performance, with the CA branch providing a slightly greater
improvement than the SA branch. Specifically, the SA branch
enhances the segmentation of classes with distinct shape
features, while the CA branch is effective in segmenting some
complex features.

2) Parameter Analysis: In the GS-AUFPN framework,
suitable parameter selection can significantly enhance the
performance of the model. Therefore, we analyze the settings
of these four parameters by the control variable method. The
evaluation metrics for the proposed model on the ISPRS
Potsdam scene dataset and LoveDA Urban scene dataset with
different parameter values are presented in Tables III and IV,
respectively. Our findings indicate that the model performance
is optimal when N is set to 128, C’ is set to 64, r is set to
16, and j is set to 3. When the data samples are relatively
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Fig. 9. (a) FLOPs and (b) Params for different modules on the ISPRS
Potsdam scene dataset.

TABLE III

EVALUATION METRICS OF THE PROPOSED MODEL ON THE ISPRS
POTSDAM SCENE DATASET WITH DIFFERENT PARAMETER VALUES

N C r j O0A(%) mF1(%) mloU (%)
3 88.49 84.05 74.26
128 64 8 5 8849 83.91 74.13
7 8847 83.76 74.02
8 88.49 84.05 74.26
128 64 16 3  88.72 84.56 74.87
32 88.38 83.96 74.17
32 88.47 83.64 73.90
128 64 16 3  88.72 84.56 74.87
128 88.51 83.84 74.08
64 88.59 84.03 74.33
128 64 16 3  88.72 84.56 74.87
256 88.66 84.24 74.54

simple and the dataset is sufficiently large, variations in these
parameters have a minimal impact on model performance.
Among the parameters, C’ has the most significant impact
on performance, while j has the least. Conversely, when
dealing with more complex data samples, adjustments in
these parameters result in more pronounced changes in model
performance.

B. Comparison With State-of-the-Art Methods of
Single-Domain Semantic Segmentation

In this section, we compare the proposed GS-AUFPN
approach with several state-of-the-art semantic segmentation
models. These include Pointrend [56], which uses FPN as
its framework, feature fusion networks such as PSANet [57],
DANet [58], and CCNet [59], which are based on the attention
mechanism, and DeepLabV3+ [15] and PSPNet [55], which
incorporate the modeling of global contextual relationships.

5645215

TABLE IV

EVALUATION METRICS OF THE PROPOSED MODEL ON THE LOVEDA
URBAN SCENE DATASET WITH DIFFERENT PARAMETER VALUES

N C r j O0A%) mF1(%) mloU (%)
3 5798 5952 44.25
1286 64 8 5 5766  59.24 44.02
7 5640  58.34 43.38
8 5798  59.52 44.25
128 64 16 3 5743 59.71 44.41
32 57.21 59.46 44.07
32 56.56 5821 43.29
128 64 16 3 5743 59.71 44.41
128 5754  59.53 44.23
64 5680  58.44 43.21
128 64 16 3 5743 5971 44.41
256 5737 59.09 43.76

The evaluation metrics on the ISPRS Potsdam scene
dataset and LoveDA Urban scene dataset are presented in
Tables V and VI, respectively. Figs. 10 and 11 provide the
visualization results of some test samples on the ISPRS
Potsdam scene dataset and LoveDA Urban scene dataset,
respectively. The proposed method achieves best results on
the ISPRS Potsdam scene dataset, obtaining OA values of
88.72%, mF'1 values of 84.56%, and mloU values of 74.87%.
On the LoveDA Urban dataset, the proposed method attains
the highest mF'1 value (59.71%) and mloU value (44.41%),
while the O A value (57.43%) is slightly lower than that of the
PSANet model (57.60%). In addition, our proposed model is in
the upper-middle level for the classification of various objects,
particularly achieving optimal performance on the classes with
fewer samples and higher complexity.

Fig. 12 shows the scatter plots of the distribution of FLOPs
and Params for different methods. It is evident that the
GS-AUFPN and Pointrend models, which use FPN as the
backbone, have significantly lower FLOPs and Params com-
pared to other models. Although the Params of GS-AUFPN
and Pointrend are nearly equal, the FLOPs of GS-AUFPN are
fewer. Furthermore, considering the aforementioned evaluation
metrics, the performance of the proposed model substantially
surpasses that of the Pointrend model.

Although Tables V and VI demonstrate that our pro-
posed method achieves the overall optimal performance in
single-domain semantic segmentation, it does not consistently
perform well across all classes. Consequently, when conduct-
ing specific segmentation tasks, it is necessary to consider the
number of samples and the complexity of the features to select
the model that performs best for the specific class.

C. Ablation Study and Parameter Analysis of Cross-Domain
Incremental Learning

In this section, we discuss the influence of freezing different
layers in the second branch of the GSMF-RS-DIL framework
and analyze the effect of the parameters T}, T, «, 8, and I in
Lpi. Specifically, we freeze only the first stage of the encoder
in the second branch of the GSMF-RS-DIL framework. Fig. 13
presents six different incremental learning freezing frames:
@ no freezing; @ freezing the first two stages of the encoder;
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TABLE V
QUANTITATIVE COMPARISON RESULTS ON THE ISPRS POTSDAM SCENE DATASET WITH THE STATE-OF-THE-ART NETWORKS
0,
Method Impervious Lovf wen () 04 mF1mloy
1 1 0, 0, 0,
surfaces Building vegetation Tree Car Clutter (%) (%) (%)
DeepLabV3+ 91.44/84.24 95.95/92.22 84.55/73.24 85.22/74.25 91.29/83.98 52.66/35.74 88.65 83.52 73.94
PSANet 91.49/84.32 95.82/91.98 84.27/72.82 85.20/74.21 91.10/83.66 55.63/38.53 88.62 83.92 74.25
PSPNet 91.60/84.51 95.88/92.08 84.49/73.15 85.32/74.40 91.05/83.56 54.28/37.25 88.69 83.77 74.16
Pointrend 91.17/83.77 95.83/91.99 83.92/72.29 85.22/74.25 90.69/82.97 45.89/29.78 88.21 82.12 72.51
DANet 91.37/84.12 95.73/91.81 84.26/72.80 85.29/74.36 91.05/83.57 50.36/33.66 88.44 83.01 73.38
CCNet 91.40/84.16 95.79/91.93 84.49/73.14 85.37/74.48 91.10/83.66 52.14/35.26 88.56 83.38 73.77
GSE?ESPN 91.55/84.41 95.80/91.94 84.47/73.12 85.10/74.07 90.82/83.19 59.62/42.47 88.72 84.56 74.87
TABLE VI
QUANTITATIVE COMPARISON RESULTS ON THE LOVEDA URBAN SCENE DATASET WITH THE STATE-OF-THE-ART NETWORKS
Method F1/IoU (%) 0A mF1 miloU
Background  Building Road Water Barren Forest Agricultural (%) (%) (%)
DeepLabV3+ 52.54/35.63 75.07/60.09 74.05/58.79 81.81/69.22 41.95/26.54 56.82/39.69 28.18/16.40 56.82 58.63 43.76
PSANet 54.73/37.68 75.41/60.53 73.57/58.19 81.60/68.92 44.44/28.57 57.92/40.77 26.42/15.22 57.60 59.16 44.27
PSPNet 54.29/37.26 74.88/59.85 73.50/58.10 80.48/67.34 42.22/26.76 56.38/39.26 26.28/15.12 56.91 58.29 43.38
Pointrend 51.49/34.67 74.87/59.84 73.40/57.97 81.85/69.28 48.56/32.07 57.89/40.74 6.36/3.29 54.43 56.35 42.55
DANet 53.13/36.17 75.32/60.42 72.77/57.19 79.88/66.50 49.94/33.28 57.58/40.43 20.40/11.36 56.21 58.43 43.62
CCNet 52.91/35.98 76.75/62.28 73.50/58.11 82.36/70.00 49.92/33.26 56.56/39.43 15.36/8.32 55.95 58.20 4391
GSE([;ESI;PN 53.27/36.31 76.19/61.53 71.62/55.79 81.21/68.36 48.03/31.60 54.42/37.38 33.22/19.92 5743 59.71 44.41
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Fig. 10. Visualization results of some test samples on the ISPRS Potsdam scene dataset using various state-of-the-art networks.

® freezing the first three stages of the encoder; @ freezing
the whole encoder; ® freezing all the modules except the
last convolutional layer; and ® freezing the whole decoder.
The corresponding parameter settings for Ly are detailed in
Table VII. For the analysis of parameter effects within the loss
function, we selected frame @ as the base frame due to its no
freezing, which allows for a more comprehensive assessment
of each parameter setting.

We conducted extensive ablation experiments on the ISPRS
and the LoveDA datasets, and the results are shown in

Tables VII and VIII, respectively. In these experiments, the
ISPRS Potsdam scene and LoveDA Urban scene are the
old domains, while the ISPRS Vaihingen scene and LoveDA
Rural scene are the new domains. Pretraining weights were
adopted from the single-domain semantic segmentation results
in Section V.

1) Parameter Effects in Lp;: We systematically inves-
tigated the influence of the parameters Tj, T>,«, 8, and
I through ablation experiments using the control variable
method. The experimental results indicate that 7} and «
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Visualization results of some test samples on the LoveDA Urban scene dataset using various state-of-the-art networks.

TABLE VII

EVALUATION METRICS OF ABLATION EXPERIMENTS ON DIL SEMANTIC SEGMENTATION WITH DIFFERENT FREEZING
FRAMES AND Lpj, PARAMETER SETTINGS ON THE ISPRS DATASET

Potsdam Vaihingen
Frames LT e B iy s v iU () Mg Gy tmiev
Single task (A-A) - - - - - 74.87 - 69.77 - -
©) 1.0 10 05 1.0 [0,1,2,3] 63.28 -15.48 62.61 -10.26 -12.87
® 20 1.0 05 1.0 [0,1,2,3] 62.01 -17.17 66 -5.4 -11.29
©) 20 20 05 1.0 [0,1,2,3] 61.99 -17.2 65.99 -5.41 -11.31
® 20 1.0 05 05 7[0,1,2,3] 61.99 -17.2 66.01 -5.39 -11.29
® 20 1.0 10 05 7[0,1,2,3] 62.57 -16.43 63.8 -8.55 -12.49
® 20 1.0 1.0 1.0 [0,1,2,3] 62.6 -16.39 63.8 -8.55 -12.47
® 20 1.0 05 1.0 [1,2,3] 61.98 -17.21 65.99 -5.41 -11.31
® 20 1.0 05 1.0 [2,3] 61.96 -17.24 65.98 -5.43 -11.33
® 20 1.0 05 1.0 [3] 61.96 -17.24 65.97 -5.44 -11.34
GSMF-RS-DIL 20 1.0 0.5 1.0 [1,2,3] 61.91 -17.31 65.81 -5.67 -11.49
@) 20 1.0 05 1.0 [2,3] 61.74 -17.53 65.19 -6.56 -12.05
® 20 1.0 05 1.0 [3] 62.47 -16.56 61.92 -11.25 -13.9
@ 2.0 - 1.0 - - 62.75 -16.18 57.56 -17.5 -16.84
® 2.0 - 1.0 - - 61.74 -17.53 45.19 -29.55 -23.54
® 20 1.0 05 1.0 [0,1,2,3] 61.67 -17.63 65.45 -6.19 -11.91

significantly impact model performance, whereas 7, and B
have a smaller impact. The number of stages [ used to
calculate Lie,uure has a minimal effect when the frame and other
parameters are fixed. Optimal performance on both datasets
was achieved with parameters 77 = 2.0, T, = 1.0, « = 0.5,
B =1.0,and I = [0,1,2,3].

2) The Effect of Incremental Learning Freezing Frames:
Among the freezing frames, frame ® performed the worst,
followed by frames @ and @. The difference between other
frames was relatively minor, suggesting that feature extraction
discrepancies between domains are mainly concentrated in the
second, third, and fourth stages of the encoder, and the decoder
also influences feature fusion.

On the ISPRS dataset, frame @ was the optimal, which
is 0.2% higher than GSMF-RS-DIL in the A,y metric.
Conversely, on the LoveDA dataset, GSMF-RS-DIL is the
optimal, exceeding frame @ by 0.58% in the A,y metric.
These findings indicate that freezing the first stage of the
encoder is the most effective approach when considering both
datasets.

D. Comparison With Other Cross-Domain Training Methods

In this section, we compare the proposed GSMF-RS-
DIL framework with several cross-domain training methods,
including single-task training, multitask training, fine-tuning,
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TABLE VIII

EVALUATION METRICS OF ABLATION EXPERIMENTS ON DIL SEMANTIC SEGMENTATION WITH DIFFERENT FREEZING
FRAMES AND Lpj;, PARAMETER SETTINGS ON THE LOVEDA DATASET

Urban Rural
Femes h T« 8 MIoU (%) Aoy (%) mloU (%) Ay %) -miov )
Single task (A-A) - - - - - 44.41 - 35.89 - -
©) 1.0 1.0 05 1.0 [0,1,2,3] 48.98 +10.29 34.19 -4.74 +2.78
©) 20 1.0 05 1.0 [0,1,2,3] 51 +14.84 35.81 -0.22 +7.31
® 20 20 05 1.0 [0,1,2,3] 50.87 +14.55 35.49 -1.11 +6.72
©) 20 10 05 0.5 [0,1,2,3] 50.73 +14.23 35.6 -0.81 +6.71
©) 20 1.0 1.0 0.5 1[0,1,2,3] 49.71 +11.93 34.62 -3.54 +4.20
©) 20 1.0 10 1.0 1[0,1,2,3] 49.43 +11.3 34.53 -3.79 +3.76
©) 20 10 05 1.0 [1,2,3] 50.73 +14.23 35.56 -0.92 +6.66
® 20 1.0 05 1.0 [2,3] 51.06 +14.97 35.58 -1.42 +6.78
® 20 10 05 1.0 [3] 50.81 +14.41 35.78 -0.31 +7.05
GSMF-RS-DIL 2.0 1.0 05 1.0 [1,23] 51.02 +14.84 36.21 +0.89 +7.89
@) 20 1.0 05 1.0 [2,3] 50.55 +13.83 36.14 +0.7 +7.26
® 20 1.0 05 1.0 [3] 49.24 +10.88 34.54 -3.76 +3.56
@ 20 - 10 - - 47.16 +6.19 34.36 -4.26 +0.97
® 20 - 1.0 - - 46.16 +3.94 33 -8.05 -2.06
® 20 10 05 1.0 [0,1,2,3] 50.55 +13.83 36.09 +0.56 +7.19
80 - TABLE IX
75 | PSANet QUANTITATIVE COMPARISON RESULTS ON THE ISPRS DATASET WITH
OTHER CROSS DOMAIN TRAINING METHODS
707 CONet Potsdam Vaihingen
65 1 PsPNet & TADAN mloU Ab. . mloU AP - AE';Z)")“
E 60 - DeepLabV3+ : (%) (%) (%) (%)
s s | Sllngle task (A-A) 74.87 - 69.77 - -
& GS-AUFPN Single task (A-B) - - 28.09 -59.74 -
50 A (ours) _ Multi task 74.45 -00.56 66.84 -420 -2.38
45 | iy W Boinirend Fine-tune 5482 -26.78 67.21 -3.67 -15.22
LwF 62.53 -16.48 63.8 -8.55 -12.52
“o 100 200 300 GSME-RS-DIL 1 91 1731 6581 -5.67 -11.49
FLOPs (G) (ours)
Fig. 12.  Scatter plot of FLOPs and Params for different methods on the

ISPRS Potsdam scene dataset.
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Fig. 13. Six different incremental learning freezing frames.

and the incremental learning method LwF [44]. Multi-
task training is jointly training with data samples from

both domains and represents the upper limit of accuracy
for cross-domain training models. The fine-tuning model is
retraining the old domain model using new domain samples at
a smaller learning rate. Tables IX and X present the evaluation
results on the ISPRS and LoveDA datasets, respectively.
Figs. 14 and 15 show the visualization results for some
samples on the ISPRS and LoveDA datasets, respectively.
The results indicate that directly applying the model trained
on the old domain to the new domain yields very poor
performance, with A%, - decreasing by 59.74% and 20.54%
on the Vaihingen and Rural datasets, respectively. Several
other cross-domain training methods significantly improve
the model performance on the new domain. However, the
fine-tuned method shows a 26.78% performance degradation
on the old domain of the ISPRS dataset. Overall, our proposed
GSMF-RS-DIL framework achieves the best results on both
datasets, with Aoy decreasing by 11.49% on the ISPRS
dataset and improving by 7.89% on the LoveDA dataset.
The performance of the DIL model is significantly impacted
by the degree of distributional discreteness within the dataset.
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Fig. 14. Visualization results of some test samples on the ISPRS dataset for various cross-domain training methods.
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Fig. 15. Visualization results of some test samples on the LoveDA dataset for various cross-domain training methods.

Specifically, the addition of new domains generally enhances dataset where the samples are more evenly distributed across
the accuracy of the old domains, particularly in the LoveDA  both scenarios. However, in the ISPRS dataset, the sample
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TABLE X

QUANTITATIVE COMPARISON RESULTS ON THE LOVEDA DATASET WITH
OTHER CROSS DOMAIN TRAINING METHODS

Urban Rural A
mloU Aoy mIoU Apy o
o) ) k) P

Single task (A-A) 44.41 - 35.89 - -

Single task (A-B) - - 28.52  -20.54 -
Multi task 5391 +21.39 3571 -0.50 +10.45
Fine-tune 4992 +1241 3526 -1.76 +5.33
LwF 4992 +1241 3482 298 +4.71
GSME-RS-DIL 51.02 +14.84 36.21 +0.89 +7.89

(ours)

distribution across the two scenarios is more discrete with
minimal intersection between data distributions, leading to a
significant decrease in the old domain accuracy when new
domains are added. Future research could address this issue by
exploring solutions from the perspective of large-scale models.
Notably, in the cross-domain incremental learning task, our
iteration number is set to 10k, which is significantly lower than
the number of iterations for single-task direct training. Despite
this, for a small sample dataset such as ISPRS Vaihingen
scene dataset, our approach achieves performance that is not
substantially different from multitask training.

VI. CONCLUSION

In this article, we propose a new framework for DIL of
semantic segmentation in remote sensing images, namely the
GSMF-RS-DIL. Within this framework, catastrophic forget-
ting due to domain shifts is addressed to a certain extent
without using old domain data, through the means of frozen
feature layers and a new multifeature knowledge distillation
loss for co-constraints. The proposed GSR module employs
graph convolution in graph space to expand the receptive
field and extract contextual relationships within the image.
The designed DCAU module effectively fuses high-level
abstract features with low-level spatial features, enabling the
network to autonomously learn valuable information from
various feature types. Extensive experimental results on the
ISPRS and LoveDA datasets demonstrate that the proposed
method achieves the state-of-the-art performance in both
single-domain and multidomain semantic segmentation tasks.
However, the experiments in this article are limited to sce-
narios involving two domains. In the future, we will conduct
experiments involving more domains and gradually advance
incremental learning research across both domains and classes.
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