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Abstract: Large-scale and long-term landslide susceptibility assessments are crucial for
revealing the patterns of landslide risk variation and for guiding the formulation of disaster
prevention and mitigation policies at the national level. This study, through the estab-
lishment of a global dynamic landslide susceptibility model, uses the multi-dimensional
analysis strategy and studies the development trend of China’s large-scale landslide sus-
ceptibility. First, a global landslide dataset consisting of 8023 large-scale landslide events
triggered by rainfall and earthquakes between 2001 and 2020 was constructed based on the
GEE (Google Earth Engine) platform. Secondly, a global dynamic landslide susceptibility
model was developed using the ResNet18 (18-layer residual neural network) DL (deep
learning) framework, incorporating both dynamic and static LCFs (landslide conditioning
factors). The model was utilized to generate sequential large-scale landslide susceptibil-
ity maps for China from 2001 to 2022. Finally, the MK (Mann–Kendall) test was used
to investigate the change trends in the large-scale landslide susceptibility of China. The
results of the study are as follows. (1) The ResNet18 model outperformed SVMs (support
vector machines) and CNNs (convolutional neural networks), with an AUC value of 0.9362.
(2) SHAP (Shapley Additive Explanations) analyses revealed that precipitation played an
important factor in the occurrence of landslides in China. In addition, profile curvature,
NDVI, and distance to faults are thought to have a significant impact on landslide sus-
ceptibility. (3) The large-scale landslide susceptibility trends in China are complex and
varied. Particular emphasis should be placed on Southwest China, including Chongqing,
Guizhou, and Sichuan, which exhibit high landslide susceptibility and notable upward
trends, and also consider Northwest China, including Shaanxi and Shanxi, which have high
susceptibility but decreasing trends. These results provide valuable insights for disaster
prevention and mitigation in China.

Keywords: dynamic landslide susceptibility; ResNet18; Mann–Kendall test; landslide
conditioning factors
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1. Introduction
Catastrophic landslides, as profound natural calamities, exert ruinous impacts on

property and claim lives across the world [1,2]. They result from various natural and
human-induced factors, including heavy rainfall, snowmelt, earthquakes, fluctuating water
levels, natural erosion, weathering processes, and human activities such as improper
land use and engineering projects [3–5]. Landslides can severely impact infrastructure
while also directly endangering human lives. Froude and Petley report that between
2004 and 2016, 4862 fatal landslides claimed up to 55,997 lives globally [6]. This alarming
figure underscores the enormous threat that landslides pose to society. Furthermore,
landslides exhibit remarkable spatial heterogeneity. The risk and frequency of landslides
vary differently across regions. This geographical specificity makes the impact of landslide
hazards on specific areas particularly significant. Therefore, it is imperative to engage
in comprehensive research and to apply effective risk management strategies in areas
characterized by high levels of risk. LSM (landslide susceptibility mapping) serves as a
vital tool for disaster risk assessment, helping to identify vulnerable areas through detailed
analysis and mapping, offering a strong scientific basis for informed decisions on disaster
prevention and mitigation [7,8].

Recent advances in DL (deep learning) have demonstrated substantial potential for
LSM, with CNNs (convolutional neural networks) emerging as particularly effective tools
for capturing spatial patterns and complex correlations inherent in geospatial data [9,10].
Ge [11] conducted a comprehensive evaluation of various CNN architectures for landslide
susceptibility assessment, comparing their performance with traditional ML (machine
learning) and DL techniques, and affirmed the reliability of CNN-based approaches in
LSM. Despite their success, these models often encounter significant challenges, including
overfitting, computational inefficiency, and limited generalization across diverse geographic
regions. Although traditional CNN architectures are highly effective, they face difficulties
in learning complex, hierarchical features, especially in the presence of limited labeled data
or suboptimal data quality. To mitigate these issues, the present study utilizes ResNet18, a
variant of the ResNet (residual network) architecture, which incorporates residual learning
to facilitate the training of deeper networks while addressing the vanishing gradient
problem. This distinctive feature of ResNet18 enables it to efficiently model intricate spatial
dependencies in LSM tasks, even when faced with data sparsity or noisy inputs [12].
Furthermore, ResNet18’s computational efficiency and its established success in a wide
range of image-based tasks make it a highly suitable choice for LSM. In LSM, both predictive
accuracy and the optimization of computational resources are paramount, and ResNet18
excels in addressing these requirements [13].

LSM has been a subject of significant interest in the academic community, evolving
from early theoretical debates to its latest practical applications. It has evolved from a
single analysis of natural factors to a comprehensive analysis of multiple factors, and its
research methodology and technical methods have been constantly refined and developed.
The data presented in Table 1 indicate that the field of landslide susceptibility research has
expanded to the national and global scales. According to the analyses by Emberson [14] and
Lin [15] of large-scale and long-term landslide risk, the importance of conducting landslide
studies at large spatial and temporal scales is evident. Lan’s [16] research emphasizes that
geological, geomorphological, and climatic processes (including disaster processes) are
interrelated across regional and multi-temporal scales. Therefore, conducting systematic
assessments of major disaster risks, such as catastrophic landslides, over large regions and
extended time periods is of paramount importance.

Furthermore, investigating landslide susceptibility by analyzing factor-induced land-
slides and integrating dynamic factors is an important area of current disaster early warning,
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prevention, and mitigation research [17]. Kirschbaum [18] developed a web-based platform
for assisting decision making to assess the potential landslide activity in real-time. Lee [19]
created a system dynamics model to examine the complex relationship between rainfall
patterns and spatial vulnerability. By incorporating real-time rainfall data and adjusting
previous rainfall periods, it enhances the accuracy of predicting landslide warning times
and potential locations. Liu [20] unveiled a fresh approach for the early detection of land-
slides in dynamic susceptibility analysis. The approach utilizes a blend of SBAS-InSAR data
based on time series along with static conditional variables to establish an LSM model. This
produced various LSM tools over time, enabling the spatiotemporal assessment of landslide
susceptibility within the research area. Lin [21] introduced a strategy for conducting a
dynamic analysis of landslide susceptibility within a research region by focusing on the
dynamic influence of land use. Meanwhile, neural networks have been widely applied in
temporal landslide prediction. For example, Mondini [22] used DL for predicting shallow
landslides triggered by rainfall. Distefano [23] employed artificial neural networks to
study the impact of rainfall and soil moisture on the landslide trigger threshold. Addition-
ally, Nocentini [24] used ML for spatiotemporal landslide probability assessment in the
Kvam (Norway). Therefore, it is important to use neural networks for landslide temporal
prediction and evaluation.

In conclusion, these studies provide valuable insights into both large-scale and dy-
namic LSM. However, most current studies on large-scale dynamic landslide susceptibility
focus on a single dynamic factor and employ a simple ML method [21,25,26]. Therefore, the
study uses the ResNet18 to develop a global dynamic landslide susceptibility model that
includes precipitation, land cover type, and the NDVI (Normalized Differential Vegetation
Index) as dynamic condition factors, combined with elevation, aspect, slope, profile curva-
ture, the TRI (Terrain Roughness Index), plane curvature, distance to faults, lithology, and
surface soil taxonomy. China, recognized as one of the nations with the highest incidence
of landslides globally, was selected as the focus of the study. The contributions of the study
are organized into three components. Firstly, a dynamic landslide susceptibility model
was employed to assess large-scale landslide susceptibility across China over a period of
22 years, from 2001 to 2022. Secondly, the landslide susceptibility trends in China during
this timeframe were tested using the MK (Mann–Kendall) test method. A time series
analysis of representative regional points was conducted to clarify the evolving trends of
landslide hazards that have occurred in the country over the past 22 years. Thirdly, this
study explained the model through SHAP (Shapley Additive Explanations) and revealed
the effect of conditional factors on dynamic landslide susceptibility. This research provides
a scientific basis for decision makers to create effective adaptation strategies and serves as a
valuable reference for landslide hazard warning, prevention, and mitigation.

Table 1. Statistical overview of landslide susceptibility studies conducted nationally and globally.

Year of
Research

Main
Researchers Space Scale Space

Resolution Methodology Evaluation
Type Main Findings

2013 Liu [27] National
(China) 1 km × 1 km Artificial neural

network model Static Identified high-risk areas
across China

2017 Stanley [28] Global 1 km × 1 km A heuristic
fuzzy approach Static Developed a global landslide

susceptibility map

2018 Liu [29] National
(China) 1 km × 1 km Logistic

regression model Static
Evaluation of landslide

hazards, vulnerabilities, and
risks in China

2021 Lin [30] National
(China) 1 km × 1 km

GAM (generalized
additive model) and
GAMM (generalized

additive mixed model)

Static
Assessing the vulnerability to

landslides triggered by
rainfall in China
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Table 1. Cont.

Year of
Research

Main
Researchers Space Scale Space

Resolution Methodology Evaluation
Type Main Findings

2021 Wang [31] National
(China) 1 km × 1 km The maximum

entropy model Static
Evaluated susceptibility and

risk factors of landslides
in China

2022 Lin [15] National
(China) 1 km × 1 km GAMM Static

Evaluation of landslide
susceptibility in China in
relation to climate change

is proposed

2022 Li [25] Global 1 km × 1 km Random forest and
LightGBM model

Dynamic
(2020–2021)

Created a global dynamic
landslide susceptibility model

2024 (This text) National
(China) 1 km × 1 km ResNet18 model Dynamic

(2001–2022)

Revealed dynamic changes in
landslide susceptibility in

China from 2001–2022

2. Study Area and Resources
2.1. Study Area

Landslides are common natural disasters caused by various factors, including topog-
raphy, geomorphology, geological structure, hydrometeorological, and human activities.
In recent years, landslides have increased in frequency with global climate change, rising
global temperatures, and heightened precipitation levels. China, acknowledged as one of
the countries most prone to landslide disasters worldwide, has been chosen as the focal
point of this study.

China is located in eastern Asia with the Pacific Ocean to its east. It encompasses a
vast area with diverse natural environments. China covers an extensive land area of around
9.6 million square kilometers, along with a maritime zone measuring 4.73 million square
kilometers. The geographical coordinates of China range from 73◦33′ E to 135◦05′ E and
3◦51′ N to 53◦33′ N (Figure 1). The geographical features of China are characterized by
significant elevation variations, with the western regions exhibiting high altitudes and the
eastern regions presenting lower elevations. Plateaus, hills, and mountains dominate the
landscape, covering approximately 67% of the country, while the remaining 33% consists
of plains and basins. The geological structure is characterized by multiple plates, fracture
zones, and folded zones. The climate is diverse, ranging from cold temperate to temperate,
subtropical, and tropical. Its complex topography, diverse geological structures, variable
climate, and human activity have led to frequent landslide disasters in China.

2.2. Resources
2.2.1. Landslide Inventory

Landslide inventories represent a fundamental dataset for LSM studies and con-
tain temporal and spatial information on landslides. The primary data source for global
landslide susceptibility research is the COOLR (Cooperative Open Online Landslide
Repository), which includes datasets such as the Landslide Report Catalogue [32] and
GLC (Global Landslide Catalogue) [33,34] and a subset of locally reported landslide data
(https://landslides.nasa.gov, accessed on 1 April 2024) (Figure 2). The website contains
data on landslide sites from 1915 to 2021 sourced from various sources, including satellite
remote sensing, ground surveys, and disaster reports. The integration of these datasets
enabled the exclusion of small landslides, landslides with ambiguous temporal information,
and landslides with incomplete data. A total of 8023 large-scale landslide events triggered
by rainfall and earthquakes between 2001 and 2020 were extracted. This was performed
because rain and earthquakes are the most common high-impact landslide triggers globally,
and high-quality data on rain and earthquakes are relatively abundant and readily available.
These data serve as a solid foundation for investigating landslide susceptibility, thereby

https://landslides.nasa.gov
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improving the comprehension of both the spatiotemporal patterns of landslide events and
their associated triggers.
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2.2.2. Landslide Conditioning Factors

LCFs (Landslide conditioning factors) encompass both natural and anthropogenic
elements that affect the possibility of landslide events, which is critical for the precise assess
landslide susceptibility [30,35–37]. However, there are no unified standards for the selection
and application of LCFs. By summarizing a massive body of literature [25,27,28,38], it was
found that topography, geological, soil, and environmental factors are the most commonly
used LCFs in global studies. From the studies, we selected for 12 LCFs. The dynamic
condition factors were derived from time-based data encompassing NDVI, land cover
type, and precipitation. Static condition factors were extracted from a range of data
sources including aspect, elevation, slope, profile curvature, TRI, lithology, plane curvature,
distance to faults, and surface soil taxonomy data. Table 2 presents a detailed enumeration
of all data sources utilized.

Table 2. Statistics on data sources.

Data Type Conditioning Factor Dataset The State of the Condition Factor

Topographic

Elevation (ELE)

GMTED2010 (Global Multi-resolution
Topographic Elevation Data 2010) model is

characterized by a spatial resolution of
7.5 arcseconds

Static

Slope (SL)

Aspect (AS)

Plane curvature (PLC)

Profile curvature (PRC)

Terrain Roughness Index (TRI)

Geological
Lithology (LITHO) GLIM (Global Lithology Map),

Resolution 1:3750,000
Static

Distance to faults (FTD) GEM (Global Earthquake Model) released
in 2019

Soil Surface soil taxonomy (SST) OpenLandMap USDA soil classification,
Resolution 250 m Static

Environmental

Normalized Difference Vegetation
Index (NDVI)

Global MOD13Q1 V6 Vegetation Index,
Resolution 250 m

DynamicLand cover type (LC) Global MCD12Q1 V6 land cover type, resolution
500 m

Annual cumulative
precipitation (PRE)

ERA5-Land Monthly Aggregated-ECMWF
climate analysis dataset, resolution 0.1◦

Topographic factors are essential components in the analysis of LSM and play a
substantial role in influencing the formation and spatial distribution of landslides. These
factors, which encompass slope, aspect, and elevation, represent the variations in the
terrain’s surface characteristics. They function as direct indicators of the essential conditions
related to slope instability and have a substantial effect on the frequency and distribution
of landslides. Therefore, this study examines aspect, slope, elevation, TRI, profile curvature,
and plane curvature. Elevation data were sourced from the GMTED2010 [39], and other
terrain factors were calculated from the elevation data.

Among the geological factors, lithology is intrinsically linked to slope stability, with
variations in lithological composition influencing the magnitude of landslides. The litholog-
ical information utilized in this research is sourced from the GLIM [40]. The susceptibility
to landslides is significantly influenced by geological formations, with faults playing a
crucial role. Joint fractures formed by faults often determine the potential sliding surfaces
and boundary conditions of landslides, which are particularly susceptible to destabilization
in areas with complex geological formations. This study further obtained distance data
from the landslide point to the fault from the fault dataset of the GEM Global Active Faults
Project [41]. (https://github.com/GEMScienceTools/gem-global-active-faults, accessed
on 1 April 2024).

https://github.com/GEMScienceTools/gem-global-active-faults
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Among the soil factors, surface soil taxonomy has a significant influence on landslides
through its effects on water retention and permeability, the stability of the soil cover, and its
interaction with lithology. Consequently, it is considered one of the primary contributors to
landslide occurrences [42]. In this study, the OpenLandMap USDA Soil Taxonomy Great
Groups were selected and visualized using OpenLandMap.org.

Among the environmental factors, the NDVI serves as an indicator of vegetation
cover, illustrating the extent of vegetative presence within a specified area. Vegetation
mainly reduces the damage of water flow to the slope through the root stabilization of its
rhizomes, thereby helping to prevent landslides [43]. NDVI data were sourced from the
MOD13Q1 Version 6 dataset with a time resolution of 16 days. Various land cover types
exhibit distinct soil mechanical and hydrological characteristics, which influence slope
stability and, thus, landslide development. As a result, land cover types were frequently
chosen as a focus for investigating landslide susceptibility [44]. Land cover type data were
sourced from the MCD12Q1 Version 6 dataset with a time resolution of 1 year. Landslides
are primarily triggered by precipitation, which facilitates the infiltration of rainwater into
soil and rock formations. This infiltration alters the physical properties of these materials,
thereby diminishing their resistance to sliding. When the shear strength of the soil is
insufficient to resist gravitational forces or other external stresses, the stability of the slope
is compromised, leading to landslides [38]. Precipitation data were analyzed using the
ERA5-Land Monthly Aggregated-ECMWF climate reanalysis dataset with a temporal
resolution of monthly average data [45].

3. Methodology
Figure 3 depicts the fundamental steps involved in developing and assessing a dy-

namic landslide susceptibility model. This includes the following steps. (1) Data prepro-
cessing was performed, which included a review of the relevant literature, the collection
of landslide inventory data, and the preliminary selection of static and dynamic condi-
tioning factor data, followed by data preprocessing. (2) Conditioning factor selection was
conducted utilizing the PCC (Pearson correlation coefficient) and MI (mutual information).
This was followed by selecting the factors that triggered the landslides and constructing
a model training dataset. (3) Model construction and evaluation was performed using
three methods—SVM (support vector machines), CNN, and ResNet18—for model con-
struction. The model’s performances were assessed utilizing various model evaluation
metrics. (4) Dynamic factor change analysis was conducted by using the MK test to test the
spatial distribution and analyze the spatial trend change of dynamic factors in China. A
model interpretability analysis was performed utilizing the SHAP method. The results and
analysis of dynamic landslide susceptibility were conducted. The most performant model
was employed to evaluate dynamic landslide susceptibility for the chosen study area,
and the susceptibility probability map was partitioned using the equal-interval method.
The dynamic landslide susceptibility prediction probability results were subjected to the
MK test, and typical areas (significantly increasing, decreasing, high, and extremely high
landslide susceptibility zoning) were analyzed in a time series using the one-dimensional
linear regression method.

OpenLandMap.org
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3.1. Data Preprocessing

GEE (Google Earth Engine) serves as an online platform for geographic information
processing that integrates a large amount of remotely sensed and geospatial data to pro-
vide users with high performance data processing and analysis capabilities [46,47]. The
GEE platform was utilized to handle various conditional factors such as standardizing
spatial resolution, identifying dynamic factors, and overlaying factor data. A feature
matrix was generated using the landslide inventory data. According to Huang [48] and
Pourghasemi [49], the data imbalance issue suggests that employing a one-to-one ratio of
landslide-to-non-landslide samples is not entirely justifiable, given that the actual landslide
area represents only a minor fraction of the total regional area. Recognizing this problem,
the feature matrix of this study was constructed employing a 1:2 ratio containing 8023
landslide and 16,046 non-landslide samples. To process the impact factors, the vector data
were rasterized into 1 km × 1 km resolution cells. To ensure consistent spatial resolution
throughout the dataset, the raster data were all sampled as 1 km × 1 km resolution cells. In
addition, to ensure consistency and comparability in the temporal analysis, it is important
to consider that precipitation data are typically available at monthly scales. NDVI data,
derived from satellite imagery, are processed at a seasonal scale. Land cover data is up-
dated annually, thus necessitating the use of a consistent annual temporal resolution across
all factors. While finer temporal resolutions could offer better insights into short-term
landslide triggers, using an annual resolution allows for the analysis of broader, long-term
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trends in landslide susceptibility and land system dynamics. Studies by Lin [30] and
Ngo [50] have used similar temporal resolutions to effectively model large-scale landslide
susceptibility, emphasizing that annual data are generally sufficient for understanding
long-term susceptibility patterns.

Subsequently, landslide and non-landslide data are integrated with the impact factors
to create a dataset. To ensure the scientific rigor and reliability of the model, the dataset
is randomly partitioned into a training set and testing set, with a 4:1 ratio. This approach
helps maintain the representativeness and independence of the data for model validation.

3.2. Condition Factor Selection

In landslide susceptibility evaluations, the PCC serves as a significant metric for ana-
lyzing the relationship among conditional factors. A PCC value nearing an absolute value
of 1 signifies a more robust correlation between the two variables being analyzed [9,51]. In
the DL training, high-correlation data not only causes data redundancy and reduces model
execution efficiency, but it also has an impact on prediction accuracy. However, correlation
analysis does not analyze the dependency between the character variable (LCFs) and the
dependent variable (landslide class label) to select the appropriate condition factor that
triggers landslides. Given this issue, the study employed the MI to evaluate the association
between the predictors and the outcome variables. Finally, the PCC and MI were combined
to choose the LCFs.

PCC includes the conditional factors E and F, and the PCC(E, F) of E and F is defined
as follows:

PCC(E, F) =
∑n

i=1
(
Ei − E

)(
Fi − F

)√
∑n

i=1
(
Ei − E

)2
√

∑n
i=1

(
Fi − F

)2
, (1)

where Ei and Fi denote the i th conditional factor layer of E and F, respectively, while E and
F denote the sample averages of E and F. According to PCC [52], if PCC > 0.7, the variables
are strongly correlated, warranting consideration for exclusion from further analysis.

MI includes the condition factor E and landslide type variable G, and the MI(E, G) of
E and G is defined as follows:

MI(E, G) = ∑
g∈G

∑
e∈E

p(e, g) log
(

p(e, g)
p(e)p(g)

)
, (2)

where p(e, g) denotes the joint probability density function of the stochastic variables E and
G, p(e) and p(g) denotes the edge probability density functions of E and G, respectively.
According to the properties of MI [53], the properties of MI indicate that an increase in the
mutual information value signifies a stronger dependence between the features and the
label classes.

3.3. Model Construction and Evaluation
3.3.1. Construction of the Dynamic Landslide Susceptibility Evaluation Model

The SVM constitutes a significant supervised learning approach for evaluating hazard
susceptibility. It aims to identify the optimal decision boundary to distinguish positive
and negative samples within a training dataset [54,55]. SVMs are frequently employed in
LSM owing to their accuracy, robustness, and generalization ability [56], making them the
comparison model for this study.

CNNs are among the most popular DL algorithms and have attracted attention for their
superior performance in image vision [50,57]. Th CNN is mainly composed of convolution,
pooling, activation, and a fully connected layer (Figure 4a). The convolutional layer
plays a crucial role in capturing spatial hierarchies and identifying complex relationships
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between different features within the input data, thereby enhancing the network’s ability to
extract meaningful representations. The output of the convolutional layer is subsequently
processed by the activation layer, where the ReLU (rectified linear unit) activation function
is commonly employed. The ReLU effectively introduces nonlinearity into the model,
significantly improving its capacity for complex pattern recognition. The pooling layer
follows, performing downsampling to reduce the dimensionality of the feature maps,
thereby mitigating the risk of overfitting and improving model generalization. Finally, the
fully connected layer integrates the pooled features to produce the final output. CNNs
are extensively applied in landslide susceptibility modeling due to their robust feature
extraction capabilities, ability to learn spatial patterns, and parameter-sharing mechanism,
which significantly reduces the computational complexity of large-scale datasets.
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ResNet is a sophisticated deep CNN designed to address gradient vanishing and
network degradation during training. This was proposed by He [13] at Microsoft Research
in 2015; its fundamental unit is the ‘residual block’. Each block includes multiple cascaded
convolutional layers, activation functions, and batch normalization. The output encom-
passes two distinct components: One is an unprocessed direct result derived from input
data x, known as shortcut or skip connection, and the other component represents F(x)
added together as x, resulting in x + F(x). This process facilitates effective information
transfer across various network layers, mitigating vanishing gradients. ResNet involves
the repetitive stacking of these residue units, leading to diverse types such as ResNet18,
ResNet34, and ResNet50.

This study utilizes landslide susceptibility data that encompass a diverse array of
high spatial resolution datasets, including key indicators such as the NDVI, DEMs (digital
elevation models), and other geospatial layers. These datasets exhibit complex spatial pat-
terns that are essential for the precise modeling of landslide susceptibility. The architecture
of ResNet18, with its residual connections, is particularly well-suited for capturing these
complex spatial dependencies, enabling the model to learn hierarchical features effectively
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while mitigating the vanishing gradient problem, even when processing high-resolution
spatial data. Furthermore, the global scope of the study necessitated the use of a large,
diverse dataset with numerous input features derived from heterogeneous data sources.
In comparison to deeper neural network architectures, ResNet18’s relatively lightweight
design offers advantages. It allows for efficient training on large-scale datasets without
imposing excessive computational demands. This ensures that the model can be deployed
over extensive geographic areas without compromising processing time or memory capacity.
Additionally, the temporal variability of landslide events, such as fluctuations in suscepti-
bility due to dynamic environmental factors like rainfall, requires the model to generalize
effectively across different time periods. While ResNet18 is predominantly an image-based
architecture, its capacity to handle spatial features with temporal variability—when com-
bined with time-sensitive input layers—makes it a strong candidate for modeling dynamic
susceptibility over time. Consequently, ResNet18 offers a compelling combination of spatial
efficiency, computational feasibility, and adaptability to temporal changes. This makes it an
ideal choice for global landslide susceptibility modeling, where both accuracy and scalability
are critical.

To this end, ResNet18 was selected for simulating landslide susceptibility in this study.
For comparative analysis, SVM and CNN models were also considered. The residual units
and the ResNet18 network architecture are illustrated in Figure 4b,c.

3.3.2. Model Evaluation

The evaluation of model performance is a crucial step in constructing DL models. Var-
ious metrics must be employed to obtain an accurate and comprehensive evaluation of the
model. In binary classification tasks, the most suitable evaluation metrics are derived from
confusion matrices. These include the accuracy, f1-measure, recall, precision, ROC (receiver
operating characteristic) curve, and AUC (area under the ROC). A higher proximity of
these metric values to 1 indicates a greater efficacy of the model in fulfilling its designated
objectives. Among the various evaluation metrics, the AUC is commonly employed to
assess the performance of landslide susceptibility models. In the ROC curve, the horizontal
axis represents the FPR (false positive rate), while the vertical axis corresponds to the
TPR (true positive rate). This curve provides a comprehensive assessment of the model’s
performance by simultaneously evaluating its sensitivity and specificity. The calculation
formulas of various evaluation indicators are shown in Table 3.

Table 3. Performance evaluation indicators for evaluating binary classification DL models.

Metric Formula Remark

Accuracy TN+TP
TP+FP+FN+TN

The ratio of accurately predicted landslide sample points to the total number of
sample points.

Precision TP
FP+TP

False detection rate, the ratio of accurately predicted landslide positive sample
points to the overall number of predicted positive sample points.

Recall TP
FN+TP

Missed detection rate, the ratio of accurately predicted positive sample points for
the landslide corresponds to the total number of positive sample points identified.

F1-measure 2TP
2TP+FP+FN The integrated means of precision and recall.

AUC The integral of the
ROC curve

Careful consideration of landslide points with the landslide classification ability
can overcome sample imbalance.

TPR TP
TP+FN The proportion of positive samples classified as positive.

FPR FP
FP+TN The proportion of negative samples classified as positive.

Notes: TP denotes a sample identified as a landslide that is accurately predicted as such. FP denotes a non-
landslide sample that is incorrectly predicted as a landslide. TN denotes a sample classified as a non-landslide
that is correctly predicted as a non-landslide. FN denotes a landslide sample that is incorrectly identified as a
non-landslide.



Appl. Sci. 2025, 15, 2038 12 of 28

3.4. Result Analysis: SHAP Explainable and MK Test Method
3.4.1. SHAP Explainable

The SHAP model interpretation tool was initially proposed by economist Lloyd Shap-
ley and originated from a game theory [58]. With Lundberg [59] introducing this concept
into the field of ML, SHAP helps reveal the results of black-box models and improves
model transparency and user’s trust in ML models. Furthermore, Pradhan’s initial use
of SHAP in landslide susceptibility modeling has gradually led to an increased focus on
model interpretability in LSM [60].

The SHAP value serves to quantify the contribution of each feature to the model,
thereby facilitating a deeper understanding of the role that these features play within the
model. The SHAP is computed as follows:

ϕi = ∑
S⊆{x1,...,xp}\{xi}

|S|!(p−|S|−1)!
p!

[ fx(S ∪ {xi})− fx(S)], (3)

where ϕi denotes the contribution of the i th feature, S denotes the collection of all features
excluding feature xi, and p indicates the overall number of features. The fx(S ∪ {xi})
indicates the model predicted value when features are added on top of the subset of
features S, and fx(S) represents the model predicted value when only the subset of features
S is used.

The interpretation of SHAP includes global and local interpretations, with Shapley
values serving as an additive feature attribution method. Each observation model displays
a Shapely value, resulting in each characteristic displaying a particular shape. For a specific
input feature z, local accuracy requires that the interpreted model’s output matches the
output of the reduced input z′, as given by the following equation:

f (z) = g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i, (4)

where g denotes the explanatory model, z′ ∈ {0, 1}M denotes the simplified z input features,
M signifies the overall number of input features, and ϕi is as derived from Equation (3).
ϕ0 denotes the model output in the absence of all features. For a global interpretation, the
average impact of each feature was obtained by averaging the SHAP values for all samples.

In this study, we used SHAP to easily estimate the influence of various features on DL
models [61,62]. First, we create a DL SHAP “Explainer” object that uses training samples
as background data. Then, the characteristics of the test samples are interpreted and
analyzed. Finally, we generate a summary plot that shows the importance ranking of
each feature. This methodology not only offers a comprehensive analysis of each feature’s
contribution to the predicted outcomes but also enhances the accuracy and dependability
of model interpretations.

3.4.2. MK Test

The MK test is a non-parametric statistical method used to analyze trends in time-
series data [63,64]. It employs p-values and Z-values to ascertain the presence of significant
trends in the dataset. The research employs the MK test to analyze the trend of landslide
susceptibility probability over a span of 22 years in China. Specifically, while Z < 0 signifies
a downward trend, Z equals zero signifies the absence of a significant trend, and Z > 0
signifies an upward trend. The significance level, represented by p, reflects the probability
of erroneously rejecting the null hypothesis. For a significance level of p = 0.01, the
confidence level is 2.58, whereas for p = 0.05, the confidence level is 1.96. In the study, when
0.01 < p < 0.05 and 1.96 < |Z| < 2.58, a trend is regarded as significant, while a trend is
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considered highly significant if p < 0.01 and |Z| exceeds 2.58. In all other cases, the trend
is viewed as not significant.

4. Results
4.1. LCFs Selection and Dynamic Factor Change Trend Analysis in the Study Area
4.1.1. LCFs Selection and Analysis

In this study, we first chose 12 variables: elevation, aspect, slope, profile curvature,
plane curvature, TRI, NDVI, land cover type, surface soil taxonomy, precipitation, lithol-
ogy, and distance to faults. The PCC between the LCFs was calculated, with the results
depicted in Figure 5. The correlation coefficient between the slope and profile curvature
was determined to be 0.725, suggesting a robust association between these two variables.
Furthermore, we calculated the MI between the LCFs and landslides, with the results
illustrated in Figure 6. The results indicate that the slope has less information and is less
dependent on landslide occurrence. The slope factor was eliminated after careful consider-
ation. After factor elimination, eleven factors, including elevation, aspect, profile curvature,
plane curvature, TRI, NDVI, distance to faults, land cover type, surface soil taxonomy,
precipitation, and lithology, were retained for the final model.
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Based on these factor selection results, we further analyzed the interactions between
static and dynamic factors to better understand their combined impact on landslide sus-
ceptibility. As demonstrated in Figure 5, the red-highlighted areas signify the correlation
between static factors, while the yellow-highlighted areas denote the correlation between
dynamic factors. The remaining areas indicate the correlation between dynamic factors
and static factors. Elevation, slope, and profile curvature exhibit strong correlations, in-
dicating that these topographic static factors collectively influence the geomorphological
stability of the slope. Furthermore, precipitation and land cover demonstrate a discernible
pattern of correlation, indicating their role as dynamic factors that vary with time and
season. It is noteworthy that precipitation exhibits a negative correlation with certain
static factors (e.g., plane curvature and distance to faults), suggesting that precipitation-
driven landslides may be more prevalent in low-curvature and gently sloping areas due to
moisture accumulation. As demonstrated in Figure 6, the MI results illustrate the relative
importance of various factors influencing landslide susceptibility. Among the static factors,
surface soil type, elevation, and distance to faults exhibit high MI values, underscoring
their fundamental role in landslide occurrence. Among the dynamic factors, precipitation
and land cover demonstrate significant MI values, emphasizing their direct influence in
triggering slope failure. The comparison of MI values between static and dynamic factors
suggests that, while static factors primarily determine the baseline susceptibility of an area,
dynamic factors such as precipitation act as key triggers, especially in areas that are already
susceptible to instability. Therefore, landslide susceptibility is the result of a combination of
long-term static topographic features and short-term dynamic environmental conditions.

4.1.2. Analysis of Dynamic Factor Changes in China from 2001 to 2022

We used ArcGIS 10.8 software to generate spatial distribution maps of precipitation,
NDVI, and land cover type in China from 2001 to 2022 and tested the trends (Figure 7). The
results showed that between 2001 and 2022, precipitation reach a maximum of 13,463.5 mm
and a minimum of 2.95 mm. Overall, south-central China received more precipitation
each year, with the highest amounts in southern Tibet and lower amounts in northwest
China (Figure 7a). During these 22 years, there was no significant trend in precipitation
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in most regions of China. This stability suggests that the use of annual precipitation data
remains a valid method for assessing long-term landslide susceptibility trends. However,
a few regions, such as northern Xinjiang, central Henan, parts of Yunnan, and Taiwan,
exhibited a significant decreasing trend in precipitation (p < 0.05), while some areas, in-
cluding southwestern Xizang, Heilongjiang, the border regions of Inner Mongolia and Jilin,
northeastern Zhejiang, and parts of Qinghai, showed a significant increasing trend (p < 0.05)
(Figure 7b). The NDVI showed a clear north–south divide, with the Heihe–Tengchong line
as the boundary and a lower NDVI in the north and a higher NDVI in the south. This
could be because the southern region, with more precipitation and dense vegetation, had a
higher NDVI than the northern region, which had less precipitation and sparse vegetation
(Figure 7c). Over 22 years, the NDVI increased significantly (p < 0.01) in most regions of
China, while it decreased significantly in few regions (Figure 7d). The predominant land
cover type in China’s northern and northwestern region is non-vegetative, with shrub and
grassland ecosystems dominating the central regions, and a variety of tree-based and other
vegetative cover types dominating the south. Cities, buildings, water bodies, permanent
snow, and ice were sparsely distributed (Figure 7e). During the 22-year observation period,
China’s rapid economic development caused significant changes in land cover types across
the country. These changes indicate a gradual expansion of land use and a discernible trend
towards the transition between different land cover types. Regions without noticeable
change trends, however, were primarily characterized by distinct topographic features that
rendered them difficult to utilize. These include deserts and wastelands in non-vegetated
areas, alpine forests in vegetated regions, and construction land that has already been used
(Figure 7f).
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4.2. Model Evaluation Results

The metrics of f1-measure, recall, and accuracy for the three models were derived from
a confusion matrix applied to the test dataset following the training phase. Additionally,
the model performance was evaluated using AUC values (Figure 8). The ROC for the SVM,
CNN, and ResNet18 models yielded AUC values of 0.9209, 0.9322, and 0.9362, respectively.
All exceeded the threshold of 0.9, indicating that these models exhibited an excellent test
performance on this dataset. The test data exhibited accuracies of 0.8489, 0.862, and 0.862,
recalls of 0.7282, 0.8106, and 0.8788, and f1-measures of 0.7672, 0.7962, and 0.809 for the
respective models. The findings demonstrate that the ResNet18 model achieves optimum
performance in predicting the probability of landslide susceptibility.
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4.3. Dynamic Evaluation of Landslide Susceptibility and Temporal Probability Analysis of Typical
Regions in China
4.3.1. Dynamic Evaluation Results and Analysis of Large-Scale Landslide Susceptibility
Trends in China from 2001 to 2022

Using the trained model, we evaluated the probability of landslide events occurring
from 2001 to 2022 and generated a dynamic large-scale landslide susceptibility map for
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22 years. The equal-interval classification technique was employed to categorize suscepti-
bility probabilities into five distinct levels: extremely high (0.8–1), high (0.6–0.8), medium
(0.4–0.6), low (0.2–0.4), and extremely low (0–0.2). The area percentage for each landslide
susceptibility subzone was calculated for each year (Figure 9). The MK test was conducted
on the forecast probability map (Figure 10). The results showed that regions with high and
extremely high landslide susceptibility in China were predominantly located in southern
Xizang, Yunnan, Guizhou, Sichuan, Chongqing, Hunan, southern Gansu, Shaanxi, Shanxi,
western Hebei, western Henan, Hubei, Anhui, Shanghai, Zhejiang, Guangxi, Guangdong,
Hainan, Taiwan, on the southeastern coast of Jiangsu, and in the areas along the Tien Shan,
Kunlun Mountains, and Qilian Mountains in northern China (Figure 10a). The combined
area percentages for high and extremely high susceptibility were recorded at 10.22 per-
cent and 12.97 percent, respectively. Except for a few areas with low precipitation, most
areas had high precipitation. Overall, the spatial distribution of landslide susceptibility
zones closely correlated with precipitation patterns, as regions with elevated precipita-
tion demonstrated a higher likelihood of landslide occurrences. From the spatial trend
test, the probability of landslide susceptibility in the regions of southern Xizang, eastern
Sichuan, western Chongqing, the Sichuan–Guizhou border, Heilongjiang, northern Inner
Mongolia, and coastal Liaoning, northern Gansu, northern Shanxi, central and western
Xinjiang, coastal Guangdong, central Zhejiang, coastal Shandong, central Hunan, southern
Anhui, south-central Guangxi, north-central Jiangxi, north-central Qinghai, and along the
border of Inner Mongolia and Jilin showed a significant increasing trend (p < 0.01). In
contrast, the landslide susceptibility at the border of Gansu and Ningxia and in north-
central Shaanxi, northern Shanxi, western Henan, northern Hebei, southern Fujian, and
south-central Yunnan showed a significant decreasing trend (p < 0.01) (Figure 10b). Based
on the spatial distribution and variation trend of landslide susceptibility, the probability of
landslide occurrence in southeastern Xizang, along the border of the Sichuan, Chongqing,
and Guizhou provinces, along the coast of Guangdong, on the northern coast of Shan-
dong, and in central Zhejiang, southern Anhui, central Hunan, central Jiangxi, central and
southern Guangxi, and Hong Kong was high and showed a significant increasing trend
(p < 0.01). The probability of landslide occurrence in southern Gansu, north-central Shaanxi,
South Shanxi, west Henan, central Yunnan, south Fujian, Hainan, and Taiwan was high
and showed a significant decreasing trend (p < 0.01).
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4.3.2. Temporal Analysis Results of Large-Scale Landslide Susceptibility in Typical Area

Figure 11 depicts the results of the one-dimensional linear regression method to fit
typical regions linearly. Twelve regions with a high probability of landslide occurrence
and significantly increasing trends were chosen: Anhui, Chongqing, Guangdong, Guangxi,
Guizhou, Hunan, Jiangxi, Shandong, Sichuan, Hong Kong, Xizang, and Zhejiang (Figure 10b
partial red pentagram region). In addition, eight regions with a high probability of landslide
occurrence and significantly decreasing trends, Fujian, Gansu, Hainan, Henan, Shaanxi,
Shanxi, Taiwan, and Yunnan (Figure 10b, blue pentagram region), were randomly selected,
with a total of 20 regional points. The fitting results for Anhui, Chongqing, Guangdong,
Guangxi, Guizhou, Hunan, Jiangxi, Shandong, Sichuan, Hong Kong, Xizang, and Zhejiang
show a general upward trend at these regional points from 2001 to 2022. There were two
clear turning points in 2005 and 2012, when the probability of landslides occurring in these
two years was lower than that in the other years. Furthermore, special attention should be
paid to Chongqing, Guizhou, and Sichuan, which are three areas prone to landslide disasters,
where the probability of landslide occurrence increased by more than 10 percentage points
between 2001 to 2022. Conversely, the fitting results for Fujian, Gansu, Hainan, Henan,
Shaanxi, Shanxi, Taiwan, and Yunnan demonstrated a general decline in the probability of
landslides in these regions between 2001 and 2022. Notably, five regions, Fujian, Gansu,
Hainan, Henan, and Taiwan, exhibited minimal declines in landslide susceptibility. In
comparison, two regions, Shaanxi and Shanxi, experienced a notable decrease in landslide
probability of over 10 percentage points.

4.4. Results of Conditioning Factor Interpretability Analysis Based on the SHAP

To clarify the influence of different conditioning factors on landslide evaluation mod-
eling in DL models and enhance the model’s explanatory capacity, we adopted the SHAP
methodology. We calculated the SHAP value of the ResNet18 model, and the results are
presented in Figure 12. The results revealed that precipitation had the greatest influence
on model training, followed by profile curvature, NDVI, distance to faults, and land cover
type (Figure 12a). As depicted in Figure 12b, the eigenvalues on the right side of the graph,
represented in red to signify high precipitation levels, exhibited a positive correlation
with the SHAP values, while the side indicates contributions to the likelihood of landslide
events. This suggests that increased precipitation correlates with a heightened probability
of landslides. Analyses of LCFs and the results of our spatial analysis show a positive
correlation between landslide distribution in China and precipitation levels, corroborating
the findings derived from Shapley value calculations.

Furthermore, to investigate the interactions between dynamic and static factors in
influencing landslide susceptibility, we examined the combined effects of precipitation,
NDVI, and land cover with key static factors such as aspect, elevation, and distance to faults.
The SHAP results indicate that while precipitation is the most dominant factor, its influence
is significantly modulated by topographic and geological conditions. For example, areas
with high precipitation and steep slopes exhibit a markedly higher probability of landslides,
suggesting a coupling effect between dynamic and static variables. Similarly, regions with
dense vegetation (high NDVI) tend to exhibit reduced landslide susceptibility, but this
mitigating effect weakens in areas with fragile lithology or near fault zones. These findings
align with the results presented in Figure 6, which illustrates the MI values for both static
and dynamic factors. The MI analysis confirms that precipitation, NDVI, and land cover
are among the most influential dynamic variables, while static factors such as surface
soil taxonomy, lithology, and distance to faults also play a critical role in determining
landslide susceptibility.
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5. Discussion
5.1. Global Training vs. Local Training

The study employed global training data to model large-scale landslide susceptibility
in China. To validate the model’s robustness, it was trained on local training data, and
both the global and local models were subsequently evaluated using local testing data.
The results of these tests are illustrated in Figure 13. The findings indicate that the SVM
and CNN models trained on local data outperform those trained on global data; however,
the opposite is true for the ResNet18 model. This demonstrates that when only a few
samples are available, the CNN has a relatively simple structure with fewer parameters
and can be trained more efficiently. The SVM is better at handling high-dimensional data
and generalizing small-sample data. The ResNet18 architecture is inherently deeper than
traditional CNNs, and as the dataset size increases, the advantages of its deeper structure
become more pronounced. Specifically, ResNet18 outperforms CNNs in terms of predictive
accuracy when trained on large volumes of data. In addition, the results of the testing
model on the local areas of the global training models showed that ResNet18 exhibited the
best robustness. Regarding the recall and f1-measure metrics, the ResNet18 model utilizing
global training data achieved the best performance. Consequently, this study provides a
sound and reliable framework for evaluating landslide susceptibility in China, employing
the ResNet18 model with global training data.
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Additionally, this study undertook an examination of the performance of the SVM,
CNN, and ResNet18 models, focusing on metrics such as parameters, training time, and
f1-measure in the global and local training landslide susceptibility assessments, as shown
in Table 4. SVMs and CNNs are known to be efficient and practical choices when the
sample size is limited. Conversely, when data resources are ample, ResNet18 is capable
of delivering a more precise and robust evaluation of landslide susceptibility. Therefore,
landslide susceptibility evaluation models should be selected based on specific application
scenarios and data sizes. Based on the ResNet18 model, this study used global training
data to assess the landslide susceptibility of China, which not only reflected the advantages
of the DL model in processing large-scale data but also provided strong technical support
for large-scale landslide assessment in the future. By using this approach, decision makers
can be provided with a strong, data-driven basis that can make a significant contribution
to improving environmental and regional policy. It also provides important evidence for
landslide disaster warning, prevention and mitigation, ensuring that proactive measures
are consistent with regional planning and environmental management objectives.
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Table 4. SVM, CNN, and ResNet18 models in global training versus local training comparison.

Model Hyperparameter or
Network Parameter

Training Time 1

(Relative)

F1-Measure
(Global

Training)

F1-Measure
(Local Training)

SVM 2 0.28 h 0.762 0.736

CNN 67,171,009 1.85 h 0.796 0.744

ResNet18 11,529,729 1.25 h 0.809 0.691

Notes: The f1-measure represents the f1-measure obtained from testing the global and local training data. 1 Experi-
mental environment: framework—TensorFlow2.10 + cuda11.8, CPU—Intel (R) Core (TM) i5-13400F, GPU—GeForce
RTX 4080 (16 G).

In addition to the comparison between the SVM, CNN, and ResNet18 models, it is
important to consider the computational trade-offs associated with the ResNet18 model,
especially in the context of large-scale landslide susceptibility assessments. Table 4 presents
a comparative analysis of key factors, including the training time and f1-measure for both
global and local training. While ResNet18 shows superior performance in terms of deliver-
ing more precise and robust results, as indicated by its higher f1-measure for global training
(0.809), its longer training time (1.25 h) is a key consideration. This factor must be taken
into account when deploying this model in real-world scenarios. Despite the increased
training time, ResNet18’s deep learning architecture offers significant scalability advan-
tages, particularly for large-scale applications. The model’s ability to handle vast datasets,
such as the global landslide data used to assess landslide susceptibility in China, makes it
highly suitable for large-scale, real-time landslide risk assessment tasks. In practical terms,
while the training process may be more resource-intensive, once the model is trained, it
can efficiently process large amounts of data. This ensures fast and scalable predictions for
landslide susceptibility across broad geographical areas. Moreover, with advancements in
computational power and parallel processing techniques, the time required for training
models like ResNet18 can be reduced significantly. Thus, the initial computational expense
is offset by the long-term benefits in terms of model robustness, accuracy, and the abil-
ity to handle large datasets efficiently. These factors make ResNet18 a highly promising
tool for large-scale landslide assessment applications, where high accuracy and scalability
are crucial.

5.2. Comparison of Evaluation Results of Landslide Susceptibility

Based on the global dynamic landslide susceptibility model, the large-scale landslide
susceptibility in China from 2001 to 2022 has been evaluated and its spatial variation
trends analyzed. The results indicate that regions with high and extremely high landslide
susceptibility are predominantly concentrated in southwest China. A comparative analysis
of the landslide susceptibility zones produced in this study with those from two existing
national assessments reveals both similarities and differences (Figure 14). Liu [29] suggested
that the spatial distribution of landslide risk in China is largely delineated by the Heihe–
Tengchong line, with the western regions characterized by predominantly low-risk areas,
and the eastern regions exhibiting higher concentrations of medium to high-risk zones
(Figure 14a). Similarly, Wang [31] identified areas of high landslide risk in southwest China,
as well as in the hilly regions south of the Yangtze River (Figure 14b). In general, the spatial
distribution of landslide susceptibility in this study (Figure 14c,d) aligns well with previous
assessments (Figure 14a,b), though some regional differences are evident. For instance,
Liu [29] categorized the southern Gansu region and the border area between Chongqing
and Sichuan as medium- to high-risk zones, whereas this study classifies these areas as
very high-risk. Similarly, Wang [31] identified Hunan, Jiangxi, and other regions as areas
of extreme susceptibility, a finding that is consistent with the results of this study. These
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discrepancies can likely be attributed to differences in the landslide databases used in each
study, which may lead to variations in the identification of landslide-prone areas due to
differences in the regional distribution of landslide events.
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Additionally, a trend analysis of large-scale landslide susceptibility in China over the
past 22 years reveals a significant increase in susceptibility in certain regions, particularly
in Chongqing, Guizhou, and Sichuan, where the probability of landslide occurrence has
notably risen. Lin and Wang [65] conducted a time-series analysis of China’s recorded
catastrophic landslides, showing a clear upward trend in the frequency of such events.
Liu [29] also mentioned an increase in landslide risk in China over the next decade, with
high-risk areas expected to expand westward beyond the Heihe–Tengchong line. At the
same time, Zhang and Ding [66] study showed that the areas in Sichuan with high and
extremely high landslide susceptibility have increased with the increase in rainfall in recent
decades. Therefore, the large-scale landslide occurrence in some areas of China has shown
an obvious increasing trend in the past 20 years, and the landslide trend in Sichuan and
other places, especially, should be paid attention.
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5.3. Analysis of Limitations

Although this study achieved significant results, it has some limitations. First, the
inherent bias in the underlying landslide data and possible incompleteness of the single
global landslide database used in this study may have impacted the landslide evaluation.
At the same time, this study reflects only the trend of large-scale landslides in large regions,
and further research is needed on the trend of small regional landslides. In terms of dataset
biases, while we used a global landslide database, it is important to acknowledge the
inherent limitations and biases that may arise from the database itself. These include the
potential underreporting of landslides in certain regions, the reliance on historical landslide
records, which may miss recent events, and variations in reporting standards across differ-
ent countries and regions. Such biases could impact the accuracy and representativeness
of the landslide data, particularly in areas with sparse data or where landslides are not
systematically recorded.

Second, uncertainties and limitations exist in the selected LCFs. Although DEMs
nowadays are highly accurate, this study employed a spatial resolution of 1 km, which
resulted in some small slopes not being reflected, thereby affecting the landslide evaluation.

Third, the main objective of this study is to assess landslide susceptibility on a large
scale and in the long term. However, some landslides are triggered by extreme events
(e.g., rainfall). In order to smooth out the effects of short-term extreme events and to avoid
single extreme events causing frequent local landslides and, thus, affecting the overall
trend analysis, an annual temporal resolution is used in this paper. In addition, the annual
temporal resolution is more appropriate for the analytical framework of this study, given
the time span of the data. Therefore, the annual scale trend analysis in this paper does not
further investigate the specific impact of extreme events on large-scale landslide hazard
susceptibility. Existing studies [19,25] have shown that the impact of short-term extreme
rainfall events on landslides can be more accurately captured using data with a higher
temporal resolution. Therefore, future studies should consider introducing finer temporal
resolution data to gain a deeper understanding of the interaction between short-term
extreme weather events and landslides.

This study used interpretable techniques to conduct an in-depth analysis of the DL
models, revealing the crucial role of precipitation in landslide occurrence. Although
SHAP was used to explain the model, the results were not fed back into the variable
selection process to demonstrate the benefits of SHAP. In light of the limitations identified
in this study, future research should focus on refining data collection by integrating more
localized, real-time, and high-resolution datasets to overcome biases and improve the
representativeness of landslide data. Additionally, selecting a broader range of dynamic
factors and employing higher temporal resolutions, such as monthly or daily records,
would allow for more accurate modeling of landslide susceptibility, especially in areas
with rapid environmental changes. Enhancing model interpretation techniques, such as
incorporating real-time monitoring systems and advanced machine learning methods, will
further improve the precision and reliability of landslide predictions. This will ultimately
strengthen the overall dependability of susceptibility assessments.

6. Conclusions
In the study, we constructed a global dynamic landslide susceptibility model employ-

ing ResNet18. By combining this with the GEE platform, we obtained spatial distribution
data for the dynamic conditioning factors in the Chinese region from 2001 to 2022. We
then employed the SHAP method to elucidate the effect of the input features on the output
results generated by the ResNet18 model, thereby highlighting the influence of LCFs on the
model. Finally, this study assessed large-scale landslide susceptibility in China from 2001 to
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2022 and used the MK test to examine spatial trend changes in landslide susceptibility over
22 years. A time-series analysis of large-scale landslide susceptibility in typical Chinese
regions was carried out. The principal findings are summarized as follows.

1. Testing the spatial distribution of precipitation, NDVI, and land cover type in China
from 2001 to 2022 revealed that precipitation did not show any significant spatial
change trends over the 22-year period. In contrast, the NDVI exhibited a significant
increasing trend, while the changes in land-cover types were complex and diverse.

2. In the model performance evaluation, the SVM, CNN, and ResNet18 models demon-
strated excellent performance (AUC > 0.9), with the ResNet18 model outperforming
the others with an AUC of 0.9362.

3. The findings from the SHAP analysis demonstrate that precipitation is the most
influential factor affecting landslides, exhibiting a substantial positive spatial correla-
tion with the likelihood of landslide events. Subsequently, other factors, including
profile curvature, NDVI, and distance to faults, exert a pronounced influence on
landslide occurrence.

4. Based on the spatial distribution of LSM evaluated in China from 2001 to 2022 and
statistics on the area share of large-scale landslide susceptibility, research indicates that
the zones in China exhibiting high and extremely high susceptibility to landslides are
predominantly located in the southwest regions of the country. Over a span of 22 years,
the average area shares of the high and extremely high landslide susceptibility zones
were recorded at 12.97 percent and 10.22 percent, respectively. Furthermore, the
spatial trend test of large-scale landslide susceptibility and the time series analysis
of typical regional points indicate that the areas with high landslide susceptibility in
Chongqing, Guizhou, and Sichuan have a significant increasing trend, with landslide
susceptibility increasing by more than 10 percentage points over 22 years. In contrast,
the areas with high landslide susceptibility in Shaanxi and Shanxi showed a significant
decreasing trend, with landslide susceptibility decreasing by more than 10 percentage
points over 22 years. These findings may provide a valuable reference for subsequent
investigations into landslide hazards in China.
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