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Abstract— Semantic segmentation of remote sensing images
is crucial for disaster monitoring, urban planning, and land
use. Due to scene complexity and multiscale features of targets,
semantic segmentation of remote sensing images has become a
challenging task. Deep convolutional neural networks capture
remote contextual dependencies that are limited. Meanwhile,
restoring the image size quickly leads to undersampling at
object edges, resulting in poor boundary prediction. There-
fore, this article proposes a multiscale semantic segmentation
network of remote sensing images based on edge optimiza-
tion, namely, multiscale edge optimization network (MSEONet).
The decoder of the network consists of a multiscale context
aggregation (MSCA) module, a coarse edge extraction (CEE)
module, and an edge point feature optimization (EPFO) module.
The MSCA module is used to capture multiscale contextual
information and global dependencies between pixels. The CEE
module is used for boundary extraction of multiclass coarse
segmentation results. The EPFO module is used to optimize
edge point features during the upsampling process. We con-
ducted extensive experiments on the International Society for
Photogrammetry and Remote Sensing (ISPRS) Potsdam 2-D
dataset, the ISPRS Vaihingen 2-D dataset, and the FLAIR #1
dataset. The results show the effectiveness and superiority of our
proposed MSEONet model compared to most of the state-of-
the-art models. The CEE and EPFO modules can enhance the
edge segmentation effect without increasing the computational
and parametric quantities too much. The code is publicly
available at https://github.com/HuangWBil/MSEONet.
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I. INTRODUCTION

ITH the development of remote sensing technology, the
Wacquisition of high-resolution remote sensing images
has become more accessible. One of the important tasks
in remote sensing is semantic segmentation, which aims to
assign a category label to each pixel in the image [1], [2].
Semantic segmentation plays a crucial role in the fields of
vegetation monitoring [3], [4], urban planning [5], [6], disaster
monitoring [7], [8], and so on. This demonstrates that the
study of semantic segmentation of remote sensing images has
significant academic and application value.

In recent years, with the vigorous development of deep
learning technology, image classification [9], [10], tar-
get detection [11], [12], semantic segmentation [13], [14],
and other fields have made significant progress. In the
field of semantic segmentation, fully convolutional networks
(FCN) [15] was the first FCN proposed and applied in image
semantic segmentation, which achieved end-to-end pixel-level
semantic segmentation. The encoder extracts features by
increasing feature channels and reducing spatial dimensions,
while the decoder uses upsampling to recover the size of
feature maps [16], [17], [18]. Subsequently, various improved
networks have emerged, such as DeepLabV3+ [19], PSP-
Net [20], UNet [21], and FPN [22]. Many scholars have
applied deep learning networks to the task of semantic seg-
mentation of remote sensing images and achieved good results.
However, the complex backgrounds of remote sensing images,
significant interclass and intraclass scale differences [23],
and dense distribution of small objects [24] also make the
application of deep learning models in remote sensing have
some challenges.

Due to the convolutional layer overemphasizing local fea-
tures, the ability to capture remote dependencies is limited.
The available contextual information is also limited by the
size of the receptive field [25], [26]. Zhao et al. [20] proposed
a pyramid pooling module (PPM) that represents feature maps
through multiple regions of different sizes to expand the recep-
tive field of the model. Chen et al. [19] further proposed an
atrous spatial pyramid pooling (ASPP) with multiscale dilation
rates to extract feature information of objects at different
scales. Wang et al. [27] introduced a stripe convolution strat-
egy to construct a multiscale convolutional attention module,
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further expanding the model’s receptive field. Xiao et al. [13]
proposed a large field convolution (LFC) that can achieve a
large receptive field with fewer parameters. It can be seen that
relevant research mainly focuses on extracting multiscale fea-
ture information and updating different convolutional methods.

In addition, due to the limitations of deep learning feature
extraction, the extracted features have a lower resolution.
Upsampling is the most commonly used method to output
segmentation images of the original resolution size, but this
method can lead to poor segmentation edges [28]. As shown
in Fig. 1, it can be seen that the misclassification regions
of the state-of-the-art deep learning methods are mainly con-
centrated on the boundary of ground objects. Although fully
convolutional networks [15] use deconvolution operations to
recover the size of feature maps, they also introduce more
parameters and computational complexity. A common strategy
is to use postprocessing methods such as conditional random
fields (CRFs) or morphological methods [29], [30]. A small
number of scholars have achieved smoother segmentation
results by converting traditional semantic segmentation tasks
into distance map prediction tasks [31]. Some scholars have
integrated low-level features with rich edge information into
high-level features with more semantic information to improve
the accuracy of prediction results [22], [32], [33]. However,
these methods often result in oversampling of object interiors
and undersampling of object edges.

To address the above problems, this article proposes a new
multiscale edge optimization network (MSEONet) for seman-
tic segmentation of high-resolution remote sensing images.
MSEONet consists of three key components: the multiscale
context aggregation (MSCA) module, the coarse edge extrac-
tion (CEE) module, and the edge point feature optimization
(EPFO) module. The three modules are connected to jointly
assist in obtaining semantically detailed segmentation results.
The main contributions of this article can be summarized as
follows.

1) An MSCA module based on pyramid pooling as the
backbone was proposed. It can effectively capture rich
global contextual information and multiscale informa-
tion by fusing shallow with deep features.

A CEE module was designed to extract edge information
for multiclass semantic segmentation effectively.

An EPFO module was developed to optimize the edge
points of the coarse results obtained from MSCA. It can
effectively alleviate the problem of inaccurate bound-
aries in the upsampling process and obtain more accurate
segmentation results.

To verify the effectiveness of the proposed method,
we conducted experiments on three datasets: the ISPRS
Potsdam 2-D dataset, the ISPRS Vaihingen 2-D dataset,
and the FLAIR #1 dataset. Our method produces optimal
results on both datasets.

2)

3)

4)

The remainder of this article is organized as follows.
In Section II, we briefly review related work. We introduce
the framework of the proposed model in detail in Section III.
Section IV describes the dataset, implementation details,
and evaluation metrics. Section V carries out a series of
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Fig. 1. Difference between the predicted results of the state-of-the-art models
and the ground truth results.

ablation experiments and compares them with state-of-the-
art models. Finally, Section VI gives the conclusion of this
article.

II. RELATED WORK
A. Semantic Segmentation of Remote Sensing Images

Semantic segmentation of remote sensing images is an
important task in remote sensing image understanding. Tra-
ditional methods are based on manually selecting features
to achieve segmentation [34]. However, this method has
high labor costs, inadequate feature representation, and poor
results [2]. In recent years, various models based on convolu-
tional networks have significantly improved the segmentation
accuracy of remote sensing images. The state-of-the-art frame-
work for semantic segmentation of remote sensing images has
consisted of two parts: encoder and decoder.

For the problem of multiscale and complex backgrounds in
remote sensing images, the most commonly used method is to
aggregate multiscale context information. Kampffmeyer et al.
[35] improved FCN by introducing median frequency bal-
ancing and applied it to small target object segmentation.
Diakogiannis et al. [16] constructed the ResUNet-a model
based on the UNet architecture and ResBlock block with
parallel dilated convolutions, and used pyramid scene parsing
pooling to aggregate contextual information. Li et al. [36]
proposed an attentive bilateral contextual network (ABCNet),
which simultaneously preserves rich spatial details and cap-
tures global contextual information through both spatial and
contextual paths. Behera et al. [37] utilized a superpixel-based
multiscale convolutional neural network for the semantic
segmentation of uncrewed aerial vehicle (UAV) images.
The superpixel segmentation can preserve critical contextual
information, and the multiscale network can extract scale
invariant features. Hou et al. [24] proposed a spatial adap-
tive convolution-based content-aware network (SPANet) for
semantic segmentation of remote sensing images. The SPANet
combines a hierarchical atrous spatial pyramid (HASP) and
a spatial-adaptive convolution-based feature pyramid network
(SPA-FPN) decoder framework. Li et al. [38] developed
an enhanced multiscale network (EMSNet) to obtain more
accurate segmentation results by integrating a multistage fea-
ture mapping module and a multiscale convolutional module,
but it increases computational complexity. Pang et al. [39]
proposed a patch-to-region bottom-up pyramid framework to
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address the problem of loss of spatial features for semantic
segmentation of large-format remote sensing images. Bai et al.
[40] constructed a dual-branch hybrid reinforcement network
(DHRNet) to obtain more comprehensive segmentation results
through a multiscale feature extraction branch and a global
context and detail enhancement branch. As can be seen, the
above studies focus on solving the balance problem between
deep multiscale spatial feature extraction and global contextual
information.

B. Edge Optimization

The feature size obtained by the encoder is much smaller
than the original image size. Upsampling to the original image
resolution by bilinear interpolation often leads to the absence
of fine information and poor prediction of detail-rich regions
such as object boundaries [41], [42]. To solve this problem,
Zhu et al. [29] improved SegNet for building recognition and
used morphological closure operations and erosion operations
for postprocessing, effectively removing a large amount of
noise. Wei et al. [30] used an improved UNet network to
segment buildings from aerial images, and the edges of
buildings were optimized using a boundary regularization
strategy. Cheng and Lei [43] used dense CRFs (DenseCRFs) to
further refine the coarse segmentation results obtained from the
modified multiscale deformable convolutional neural network
(mmsDCNN) model. However, these methods are often not
end-to-end. The research of Li et al. [5] and Wei et al. [44]
focuses on the vectorization task of building semantic seg-
mentation results based on deep learning models. According
to the shape characteristics of buildings, point-based selection
and coordinate optimization are carried out to improve the vec-
torization accuracy of buildings. Bokhovkin and Burnaev [45]
proposed a boundary loss function for binary segmentation to
optimize the building segmentation boundary. These methods
mentioned above are mostly studied in single-rule object
semantic segmentation, and many of them are not suitable
for multiclass objects. Afterward, some scholars preserved the
edge information by introducing a separate branch of edge
detection. Ni et al. [33] proposed an edge information-guided
network that uses directional convolution modules to construct
spatial detail branches to obtain accurate edge and spatial
detail information. Chen et al. [46] added a separate edge
enhancement branch to the original backbone network, and
used the Canny algorithm to extract edge information from
the original image and labels to supervise edge feature recon-
struction in the model.

However, this method requires a more significant num-
ber of parameters and computational effort. Kirillov et al.
[47] proposed a point-based rendering neural network mod-
ule (PointRend), which is based on an iterative subdivision
algorithm to output clear object boundaries during the
upsampling process while significantly reducing the number
of parameters. On this basis, Ding et al. [48] combined
DeepLabV3 with PointRend to improve the recognition per-
formance of ground cover details. This article also conducts
relevant experiments based on the theoretical foundation of
point rendering, and optimizes the selection method for uncer-
tain points (UPs).
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III. METHODOLOGY

A. Overview

The MSEONet is introduced with its overall structure in
Fig. 2. The network adopts an encoder and cascaded decoder
structure, and the backbone network of the encoder uses
a ResNet-101 structure with dilated convolution for feature
extraction. The decoder consists of two parts. Decoder 1 con-
sists of an MSCA module, which is used to increase the
multiscale representation of features. Decoder 2 consists of a
CEE module and an EPFO module, which is used to optimize
the segmentation edges during the upsampling process.

The deep features extracted from the backbone network
for stages 2—4 have rich semantic information, which are
concatenated as inputs to decoder 1. The shallow features
(edgefeatures ;;,,) extracted from the backbone network
at stage 1 have rich detailed information, which can
guide the edge reconstruction in the upsampling process.
edgefeatures ;,, and the output of decoder 1 as the input
to decoder 2. First, the coarse result (pred.,,, ) Obtained
from decoder 1 is upsampled two times and then uses the
CEE module for edge extraction. On this basis, the EPFO
module is used for UPs selection, and the features of UPs are
updated by combining edgefeatures;,, with the output of
decoder 1. Finally, the final classification result is obtained.
A detailed description of the critical modules is as follows.
Sections III-B—III-D provide detailed descriptions of critical
modules.

B. MSCA Module

In order to further reduce the loss of contextual informa-
tion, this article introduces an MSCA module to mine the
global contextual information. By pooling at different scales to
increase the receptive field, we obtain global prior information
and produce high-quality results.

Fig. 3 shows the detailed workflow of the MSCA module.
First, the feature maps of encoder stages 2—4 are concate-
nated along the channel dimension and 1 x 1 convolution is
performed on the concatenated feature maps. This operation
can integrate the features of each stage and reduce the feature
dimension, making it the same as the output dimension of the
last stage of the encoder. Then, the dimensionality-reduced
feature maps are subjected to an adaptive average pool at
four different scales to mine global contextual information at
different scales. The four sizes used in this article are (1, 2, 3,
and 6). In order to maintain the weights of the global features,
the dimension of the contextual representation is reduced to
(1/n) of the original using a 1 x 1 convolution after each
pooling layer and upsampled to the same size as the initial
feature map. Finally, the feature maps from the last stage of
the encoder are concatenated with the four feature maps after
upsampling in the channel dimension. A 3 x 3 convolution is
performed on the concatenated feature maps, and the output
channels are the same as the channels at each scale after
pooling. In order to obtain coarse segmentation results, the
output channels of MSCA are reduced to be consistent with
the number of classes using 1 x 1 convolution so that the
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Fig. 3. Detailed workflow of the MSCA module. The rectangles of different
colors represent different feature maps, and the colors correspond to Fig. 2.

probability value (probability,,,,,) of each class at each
pixel point is obtained.

C. CEE Module

In order to extract object edges (edge,,.,) from the coarse
classification results (pred,,,,.), referring to the work of
Bokhovkin and Burnaev [45] on the computation of the binary
boundary loss function, we extend its boundary extraction to
the multiclassification task. The detailed workflow of the CEE
module is shown in Fig. 4(a). According to (1), one-hot coding
is performed on pred,,,, .- In the coded multichannel matrix
(pred.,q,), each channel represents an object class. The matrix
elements of each channel only contain 0 and 1

(1)

According to (2), the max pooling operation is used to real-
ize the boundary extraction (multiedge ;) of each channel
feature of pred

coarse) .

pred.,,, = onehot (pred

pred

code

multiedge .., = maxpool(l — pred. ., 0) — (1 — pred,,;,)

2)

where the pool kernel size is 6 and the pool stride size is 1.
To ensure that the image size is unchanged before and after
pooling, zero padding on both sides is to be used, and the
width of the padding is ((6 — 1)/2) downward rounded.

The multiedge,,,, obtained in the above steps is multi-
channel data, which is extracted for each pred,,,,. Therefore,
it needs to be processed to obtain the final coarse bound-
ary information. In each object class’s multiedge,,,,, the
boundary pixel is 1, and the nonboundary pixel is 0. The
multiedge,,,, of all the object classes is summed up, and
the pixel position greater than O is taken as the final result.
The calculation method is shown in the following equation:

3)

pre

edge,, .. = sum(multiedgep,ed, dim = 1) > 0.
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Fig. 4. (a) Detailed workflow of the CEE module and (b) example of edge
extraction. The numerical labels (1)-(3) correspond to the equations.

Fig. 4(b) shows an example of edge extraction. The images
from left to right correspond to pred,,,, and edge,,.;, the
fourth object class (pred,,;.4) after one-hot coding and the
coarse boundary (multiedge ,,.q4)-

D. EPFO Module

The primary purpose of the EPFO module is to randomly
select a certain number of UPs from those edge,,, extracted
in Section III-C, and for each UP, obtain its “feature vector.”
This “feature vector” is predicted by a multilayer perceptron
(MLP) network, and the coarse prediction results are updated.
This module mainly consists of the following three parts.

1) The number (N) of UP is automatically determined by
the model, which is related to the minimum number of
edge points in each batch. The calculation method can
be defined as

N = max(int(imin(Sg, k =1,2,...,b) x ratio), 1)
4

where S is the number of extracted edge points; b is the
batch size; and ratio is a customized scale parameter,
which is 0.7 in this article.

Selection of UP: First, the uncertainty is calculated for
all edge points. Then, the N points with the largest
uncertainty are selected as the uncertainty points, and the
positional coordinates (coords) of these points are saved.
As shown in Fig. 5(a), the calculation method for the
uncertainty of points is by extracting probability,,,...
of each point and sort it in descending on the channel
dimension. The uncertainty is calculated by subtracting
the top first probability value from the top second
probability value as follows:

2)

uncert; = secondmax (probabilitywami)

— max (probabilitya,ami ) , 1

where uncert; is the uncertainty of the ith point.

Feature Representation and Updating of UP: As shown
in Fig. 5(b), the “feature vectors” of the UP are obtained
from edgefeatures;,, and probability,,,,,, based on
the coords. These two parts are concatenated along the

3)
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Fig. 5. Detailed workflow of (a) selection and (b) feature representation and
updating of UP. The numerical label (5) corresponds to the equations.

channel dimension to form a vector as the “feature
vectors.” Then, use a 1 x 1 convolution to update the
“feature vectors” of these points, and the updated “fea-
ture vectors” are taken as new edgefeaturesg;,,. The
above updating process is repeated two times. Finally,
the output channels of the updated feature vectors are
reduced to be consistent with the number of classes
using 1 x 1 convolution so that the updated probability
value (probability;,,) of each class at each UP is
obtained.

In the training stage, in order to facilitate the computation
of the loss function and reduce the computational complexity,
only probability ;;,, of UP as outputs. The loss function is
calculated by using outputs and extracting the actual classes
of corresponding points based on coords. However, in the
inference stage, it is necessary to update the probability of UP
in probability ., of the whole sample to probability s,
according to the coords. Then, through the softmax to obtain
the new classification result.

E. Loss Functions

As shown in Fig. 2, during the supervised training of the
model, the total loss function (L) consists of two parts: the
cross-entropy loss function (Lcg) and the pixel-point cross-
entropy loss function (Lpcg). The calculation formula is shown
in the following equation:

L = Lcg + Lpce (6)

where Lcg reflects the difference between the softmax output
of decoder 1 and the true label, and the calculation formula
is shown in (7). Lpcg reflects the difference between the
prediction results of the UP of decoder 2 and the true label of
the corresponding points, which is calculated as shown in (8)

k

N
1 M) 1 )
Lep=—5 D> %" log} (7)

n=1 k=1
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Sk
1 ©) e 8
Lpcg = -3 ; k; yi logyg ®)
wheren € [1,2, ..., N], in which N is the number of samples;

k is the number of classes; )3,((") is the one-hot value of the
predicted result of the sample; y\" is the real label value
corresponding to this sample; S € [1,2,...,S], in which §
is the number of sampling points; )A),(f) is the one-hot value of
the prediction result of a pixel point; and y,i‘y) is the true label

value corresponding to that pixel point.

IV. EXPERIMENTAL SETTINGS
A. Datasets

This article conducted experiments on two well-known
open-source datasets [the International Society for Photogram-
metry and Remote Sensing (ISPRS) Vaihingen 2-D dataset
and the ISPRS Potsdam 2-D dataset (http://www2.isprs.
org/commissions/comm3/wg4/semantic-label-ing.html)] and a
multiclass dataset (FLAIR #1 [49]) to evaluate the perfor-
mance of the proposed method.

1) ISPRS Potsdam 2-D Dataset: The Potsdam dataset is
a typical historic city with large building complexes, nar-
row streets, and dense settlement structures. It consists of
38 remote sensing images with a spatial resolution of 0.05 m,
all 6000 x 6000 pixels in size. It includes six classes of labels:
impervious surfaces, building, low vegetation, tree, car, and
background. In our experiments, we use only the R, G, and
B bands. For dataset split, we used IDs: 2_10, 2_11, 2_12,
3.10,3_11,3_12,4_10,4_11,4_12,5_10, 5_11, 5_12, 6_10,
6_11,6_12,6_7,6_8,6_9,7_10, 7_11, 7_12, 7_7, 7_8, and
7_9 for training and the remaining 14 images for testing.

2) ISPRS Vaihingen 2-D Dataset: The Vaihingen dataset
is a small village with many individual buildings and small
multistory buildings. It consists of 33 remote sensing images
of different sizes with a spatial resolution of 0.09 m. It includes
six classes of labels: impervious surfaces, building, low vege-
tation, tree, car, and background. In our experiments, we use
only the NIR, R, and G bands. For the dataset split, we used
IDs: 1, 3,5, 7, 11, 13, 15, 17, 21, 23, 26, 28, 30, 32, 34, and
37 for training and the remaining 17 images for testing.

3) FLAIR #I Dataset: The FLAIR #1 dataset is a part of the
dataset currently used at the French National Institute of Geo-
graphical and Forest Information (IGN) to establish the French
national land cover map reference. It consists of 77412 remote
sensing images with a spatial resolution of 0.2 m, all 512 x
512 pixels in size. It includes 12 classes of labels: building,
pervious surface, impervious surface, bare soil, water, conifer-
ous, deciduous, brushwood, vineyard, herbaceous vegetation,
agricultural land, and plowed land. In our experiment, we use
only the R, G, and B bands. We use the default dataset split
method.

B. Implementation Details

All experiments were conducted on a Linux PC with an
NVIDIA GeForce RTX 4090 GPU with 24-GB memory. All
codes were implemented based on the PyTorch deep learning
framework. For all comparisons, the pretrained ResNet-101
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model on the ImageNet dataset is used as the backbone
network. The 7 x 7 convolution of the input layer is replaced
by three 3 x 3, and the final two downsampling operations are
replaced by dilated convolutional layers with extension rates
of 2 and 4. Taking into account the limitations of hardware
conditions, our batch size is set to 4, and the number of max
iterations for all training is set to 80 k.

In the training processes, we use the “AdamW” optimizer
with weight decay for network optimization. The initial learn-
ing rate is set to 0.0001 and the weight decay is set to 0.001. A
“poly” polynomial learning rate strategy is used, with the for-
mula lr = base_lr x (1—(iteration/max_iteration))’°V",
where base_lr denotes the initial learning rate, iteration
denotes the current iteration number, max_iteration denotes
the total iteration number, and power is set to 0.9.

Due to the dataset images being too large for training
directly, we preprocessed the remote sensing images by crop-
ping them to 512 x 512 pixels with 128 overlapping pixels.
During training, we use random resizing (with scales of [0.5,
0.75, 1.0, 1.25, 1.5, 1.75, 2.0]), random cropping, and random
flipping for data augmentation.

C. Evaluation Metrics

In order to comprehensively evaluate the performance of
the proposed model, the overall accuracy (OA), the mean
intersection over union (mloU), and the mean F'1-score (mF'1)
are used as evaluation metrics. Based on the accumulated
confusion matrix, the OA, mloU, and mF1 are computed as

N
TP,
OA — - Zk:l k (9)
> k1 TPx + FP; 4+ TNy + FNy
N N
1 1 TP,
mloU = — IoU;, = — 10
N; g N;TPHFPHFNk (19)
mFl = i XN: 2 % Prégisionk * Recally (11
N P Precision; + Recall
. TP,
Precision, = —— (12)
FP, + TP,
TPy
Recally, = ———— (13)
FN; + TP,

where TPy, FP;, TN;, and FN; denote true positives, false
positives, true negatives, and false negatives, respectively, for
a particular object indexed as class k. N is the number of
object classes.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The ablation experiments and comparative experiments in
Sections V-A-V-C were only conducted on the ISPRS Potsdam
and Vaihingen datasets to verify the effectiveness of each
module and provide the optimal parameter combination. After
the above experiments, we compared the proposed model with
the state-of-the-art models on three different styled datasets to
verify the advantages of the proposed method.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

TABLE I

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT
POOLING S1ZE COMBINATIONS ON THE POTSDAM DATASET

Pooling size

0, o, o
combinations OA (%) mF1 (%) mloU (%)
1,2,3,6 88.68 84.17 74.51
1,3,6,8 88.28 83.28 73.56
1,4,8,12 88.61 83.96 74.31
TABLE II

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT
POOLING S1ZE COMBINATIONS ON THE VAIHINGEN DATASET

Pooling size

combinations OA (%)  mF1 (%) mloU (%)
1,2,3,6 87.61 81.38 70.08
1,3,6,8 87.53 80.78 69.44
1,4,8,12 87.71 80.58 69.37

A. Parameter Study for the MSEONet

1) Effect of Pooling Size in MSCA Module: In the MSCA
module, adaptive average pools at four different sizes are used
to increase the receptive field and extract global contextual
information. This section analyzes the effect of different
pooling size combinations on model performance on the
ISPRS Potsdam and Vaihingen datasets. This article chose
three different pooling size combinations for our experiments,
namely, (1, 2, 3, 6), (1, 3, 6, 8), and (1, 4, 8, 12).

The OA, mF1, and mloU values of the MSEONet model on
the Potsdam and Vaihingen datasets for different pooling size
combinations are presented in Tables I and II, respectively.
It can be seen that in the Potsdam dataset, the three metrics
are highest for the (1, 2, 3, 6) combination and lowest for the
(1, 3, 6, 8) combination. In the Vaihingen dataset, the (1, 2,
3, 6) combination has the highest values of mF1 and mloU,
and the (1, 4, 8, 12) combination has the highest values of
OA, but the mF1 and mloU values are the lowest. Overall,
the (1, 2, 3, 6) combination has the best performance on
both datasets. As the pooling size combination increases, the
performance of the model has a decreasing trend. This is due
to the fact that the increase of the pooling size combination
overemphasizes the local information, leading to a decrease in
the model performance.

2) Effect of 6 in CEE Module: In the CEE module, the
pooling window size 6 affects the width of the extracted
edges, which further affects the number of extracted UPs.
This section discusses the effect of different edge widths on
model performance by changing the value of parameter 6 (in
this experiment, 6 was taken as 3, 5, and 7) under the same
experimental conditions.

Fig. 6 shows the extracted edges when 6 is taken as 3,
5, and 7. It can be seen that as 6 increases, the extracted
edges become wider. The OA, mF1, and mloU values of
the MSEONet model on the Potsdam and Vaihingen datasets
for different 6 values are presented in Tables III and IV,
respectively. Combining the results on the two datasets, it can
be seen that the model obtained the optimal results at 6 value
was 5. As the value of 6 increases, the model performance
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Fig. 6. Results of edge extraction (edge,.q) of the coarse classification
results (pred,,, s.) When taking different values of 6.

TABLE III

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT 60
VALUES ON THE POTSDAM DATASET

0 OA (%) mFl (%) mloU (%)

3 88.52 83.83 74.18

5 88.68 84.17 74.51

7 88.57 83.89 74.22
TABLE IV

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT 6
VALUES ON THE VAIHINGEN DATASET

9 OA (%) mFl(%) mloU (%)
3 87.57 80.68 69.39
5 87.61 81.38 70.08
7 87.58 80.68 69.38

metrics do not always increase but instead show a trend of
first increasing and then decreasing. This is due to the fact
that when the edge width is small, it is not possible to learn
sufficient features to correctly classify difficult-to-distinguish
samples. When the edge width is large, a large number of
already correct pixels are used to train the EPFO module,
which will cause the classifier to overfit these samples to
a certain extent and reduce the classification accuracy of
difficult-to-distinguish samples.

3) Effect of Different Point Sampling Ratios: In the EPFO
module, N is not fixed and is automatically determined by (4),
where the parameter ratio influences the size of N. This
section analyzes the effect on the performance of the proposed
model from two aspects: whether N is fixed and the value
of the parameter ratio. When N is not fixed, it is calculated
by (4), and the specific point selection method is described
in Section III-D. In this case, we conducted experiments on
the model performance when the parameter ratio was taken
as 0.75 and 1.0. When N is fixed, referring to the research
of Kirillov et al. [47], the N value is set to 2048 during the
training process and 8096 during the inference process. The
point selection method is consistent with the method when N
is not fixed.

The OA, mF1, and mloU values of the MSEONet model
on the Potsdam and Vaihingen datasets for different point
sampling ratios are presented in Tables V and VI, respectively.
It can be seen that when the value of N is not fixed, all the
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TABLE V

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT POINT
SAMPLING RATIOS ON THE POTSDAM DATASET

Number of ratio  OA (%) mF1 mloU
uncertain points (%) (%)
Fixed - 88.52 83.90 74.10
Unfixed 0.75 88.68 84.17 74.51
Unfixed 1.0 88.65 84.11 74.43
TABLE VI

EVALUATION METRICS OF THE MSEONET MODEL FOR DIFFERENT POINT
SAMPLING RATIOS ON THE VAIHINGEN DATASET

Number of ratio  OA (%) mF1 mloU
uncertain points (%) (%)
Fixed - 87.53 80.68 69.32
Unfixed 0.75 87.61 81.38 70.08
Unfixed 1.0 87.41 80.64 69.34

metrics when ratio is set to 0.75 are better than when ratio
is set to 1.0. This result indicates that using all the edge points
does not necessarily give the optimal results. This is due to
the fact that not all of the edge points are indistinguishable
uncertainty points, and too many edge points will force the
model to focus on some regions that are already classified
correctly, leading to inaccurate prediction results. In addition,
when the value of N is fixed, all the metrics are lower than
those when the value of N is not fixed. This is because N
selected in many samples is too small, it is easy to lead
insufficient training of the model and unable to learn the
features of these difficult points that are difficult to distinguish
well.

B. Ablation Study

In order to validate the effectiveness of each module in the
proposed method, we conducted relevant ablation experimental
studies on the Potsdam and Vaihingen datasets. ResNet-101
was used as the base model, and the MSCA module for
decoder 1 and the CEE-EPFO module for decoder 2 were
gradually added to it. Due to the EPFO module depending
on the CEE module, we conducted ablation experiments with
these two modules as a whole.

1) Quantitative Analysis: Table VII shows the ablation
experimental results on the Potsdam dataset. It can be seen
that the base model only obtains 72.80% of mloU, 88.28% of
OA, and 82.35% of mF1, which is a poor performance. The
addition of the MSCA module greatly improves the segmen-
tation performance; the mloU, OA, and mF1 are improved
to 73.96%, 88.50%, and 83.63%, respectively. This is because
multiscale pooling fully exploits the global contextual informa-
tion. The addition of encoder 2 improves the mloU and mF'1
values by 0.6% and 0.5%, respectively, which indicates that
the edge point optimization module can further supplement
boundary details and alleviate the problem of missing infor-
mation during the upsampling process. The improvement of
the IoU metrics of the proposed model on the Potsdam dataset
mainly focuses on impervious surfaces, low vegetation, trees,
and backgrounds, with less improvement for cars. Building,
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TABLE VII
EVALUATION METRICS OF ABLATION STUDY FOR THE MSEONET MODEL ON THE POTSDAM DATASET

ToU (%)

Method Impervious Lo OA mF1  mloU
u oy W o o o
surface Building vegetation Tree Car Background (%) (%) (%)
Base model 83.83 91.85 72.31 7499 83.55 30.29 88.28 82.35 72.80
Base model + MSCA 84.01 91.55 72.67 75.00 83.57 36.94 88.50 83.63 73.96
MSEONet 84.11 91.45 72.91 75.63 83.37 39.59 88.68 84.17 74.51

as a more easily distinguishable object class, still maintains a
relatively high IoU value.

Table VIII shows the ablation experimental results on the
Vaihingen dataset. It can be seen that the mloU, OA, and mF'1
metrics are gradually increasing with the gradual addition of
decoders 1 and 2. The addition of decoder 1 resulted in an
increase of 2.0%, 0.03%, and 2.4% in the mIoU, OA, and mF'1
metrics, respectively. The addition of encoder 2 resulted in an
increase of 0.8%, 0.2%, and 0.7% in the mloU, OA, and mF'1
metrics, respectively. This is consistent with the experimental
results on the Potsdam dataset. However, the Vaihingen dataset
has fewer data quantities and more complex scenes compared
to the Potsdam dataset, so the performance improvement is
more obvious with the addition of the decoder module. The
improvement of the IoU metrics of the proposed model on the
Vaihingen dataset mainly focuses on the low vegetation, tree,
car, and background, and the improvement of the impervious
surface is relatively small. Building, as a class that is easier
to distinguish, still maintains a relatively high IoU value.

2) Visualization Effect: Fig. 7 shows some examples of
the visualization results of the ablation experiment on the
Potsdam dataset and the Vaihingen dataset. It can be seen
that after adding the MSCA module, some indistinguishable
features with similar characteristics are also correctly classi-
fied, indicating that the MSCA module can effectively extract
multiscale contextual information. After adding the CEE and
EPFO modules, the optimization of edge point features cannot
only reduce the problem of missing edge information in the
upsampling process but also the joint loss function of Lcg
and Lpcg can alleviate the performance degradation caused
by the overemphasis on local information in MSCA to some
extent. For correctly classified features, the EPFO module can
optimize its boundaries to a certain extent, but for incorrectly
classified features, the feature optimization module seems to
have limited effectiveness.

To further demonstrate the effectiveness of the proposed
EPFO module, this section randomly selects a portion of
edge points for visualization. Fig. 8(a) and (b) shows the
visualization results on the Vaihingen and Potsdam datasets,
respectively. In Fig. 8, 1-3 represent the true label of the point,
the pred,,,,,. before the EPFO module, and the final classifi-
cation result after the EPFO module, respectively. Different
colors represent different object classes, and each column
represents a different edge point. It can be seen that most of
the initially misclassified edge points are correctly classified
after the optimization by the EPFO module. This directly
indicates that the proposed EPFO module is effective and able

Image Ground Truth
] Impervious surfaces [l Building

After MSCA After EPFO
Tree Car Il Background

Base model
Low vegetation

Fig. 7. Some examples of the visualization results of the ablation study on
the Potsdam dataset and the Vaihingen dataset.
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Fig. 8. Visualization of the effect of the EPFO module on some edge points
on different datasets. (a) Vaihingen dataset and (b) Potsdam dataset, 1-true
labels, 2-coarse results before EPFO, 3-fine results after EPFO, color bar, and
object classes.

to optimize the edge points. However, there are still some edge
points that fail to be correctly classified, and this phenomenon
is inevitable.

C. Comparison With Other Similar Modules

1) Multiscale Approach: To highlight the innovation of
the proposed MSCA module, this section uses ResNet-101
as the base model and conducts experiments on different
multiscale models proposed in previous studies as decoders.
These multiscale models used for comparison include the
pooling pyramid module (PPM, [20]), atmospheric spatial
pyramid pooling (ASPP, [50]), and multiscale strip convolu-
tional attention module (Strip-MSA, [27]). Table IX presents
the experimental results on the ISPRS Potsdam and Vaihingen
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TABLE VIII
EVALUATION METRICS OF ABLATION STUDY FOR THE MSEONET MODEL ON THE VAIHINGEN DATASET
IoU (¢
Method Impervious LO?’V (A)) OA mF1 mloU
. . 0 0 0
surface Building vegetation Tree Car Background (%) (%) (%)

Base model 81.00 87.85 65.57 76.37 67.61 25.06 87.45 7826 67.24

Base model + MSCA 81.21 87.56 65.42 76.27 68.49 36.66 87.48 80.60 69.27

MSEONet 81.29 87.43 66.01 76.52 68.76 40.44 87.61 81.38 70.08

TABLE IX TABLE XI

EVALUATION METRICS OF THE MSEONET MODEL AND THE
STATE-OF-THE-ART METHODS ON THE POTSDAM DATASET

EXPERIMENTAL RESULTS OF DIFFERENT MULTISCALE METHODS ON
POTSDAM AND VAIHINGEN DATASETS

Potsdam Vaihingen Method Backbone auxiliary  OA mF1  mloU

Method ~ OA mFl mloU OA mFl mloU loss () (%) (%)

(%) (%) (%) (%) (%) (%) DANet ResNet-101 4 88.54 83.40 73.77

PPM 84.55 8330 73.69 87.55 80.80 69.46 CCNet  ResNet-101 Y 88.57 8348 73.87

ASPP 8856 8322 73.62 8747 80.51 69.12 ACFNet  ResNet-101 v 88.38  83.66 73.89

Strip-MSA  88.49 8323 73.61 87.49 79.87 68.63 GCNet  ResNet-101 v 88.67 83.88  74.28

Our 88.50 83.63 73.96 87.48 80.60 69.27 DNLNet  ResNet-101 v 88.70 83.78 74.18

LANet ResNet-101 x 88.37 8297 73.28

A2FPN ResNet-101 x 88.55 83.92 74.24

CGRSeg  ResNet-101 x 88.41 83.57 73.80

TABLE X MSEONet y
EXPERIMENTAL RESULTS OF DIFFERENT EDGE OPTIMIZATION METHODS (ours) ResNet-101 88.68 84.17 74.51
ON POTSDAM AND VAIHINGEN DATASETS
Potsdam Vaihingen
Method OA mFl  mloU OA mF1  mloU

@) (%) (™) (%) (%) (%)  DANet [51], CCNet [52], ACFNet [53], GCNet [54], DNL-
CRF 8848 8344 7377 8744 8054 69.16  Net [55]. LANet [56], A2FPN [57], and CGRSeg [58].
BL 88.62 8378 74.17 87.57 81.09 69.84 All methods use ResNet-101 as the backbone network and
pointrend 88.52 83.90 74.10 87.53 80.68 69.32 conduct comparison experiments under the same implementa-
Our 88.68 84.17 7451 87.61 81.38 70.08 tion details, following their respective optimal parameters and

datasets. It can be seen that the PPM method has the best
performance among previous methods, while the Strip-MSA
method has the worst performance. The results of the proposed
MSCA method in this article are not significantly different
from those of the PPM method. The MSCA method performs
better on the Potsdam dataset.

2) Edge Optimization Approach: CRFs ([43]), boundary
loss function (BL, [45]), and PointRend [47] are the methods
proposed in previous studies to optimize the coarse segmenta-
tion results. In order to demonstrate the performance of the
proposed EPFO module, this section is based on the base
model + MSCA model, and adds the CEE + EPFO module,
CRF module, BL module, and PointRend module, respectively.
Relevant experiments were conducted on the Vaihingen and
Potsdam datasets, and the experimental results are shown in
Table X. It can be seen that the proposed CEE + EPFO
module has the highest OA, mF1, and mloU metrics on both
datasets, while the CRF method has the worst performance in
all metrics. This shows that the CEE + EPFO method has the
best effect on edge optimization.

D. Comparison With the State-of-the-Art Methods

In this section, we compared the proposed method
with some state-of-the-art semantic segmentation meth-
ods to demonstrate its advantages. These methods include

loss function settings.

1) Comparison on the Potsdam Dataset: To validate the
performance of the proposed methods, we compared them with
these state-of-the-art methods on the Potsdam dataset. The
evaluation metrics of each method are shown in Table XI.
Compared to other methods, the proposed model has the
second highest OA value after the DNLNet model, but both
mloU and mF1 metrics are optimal and higher than the
DNLNet model. Meanwhile, compared with other models that
added an auxiliary head loss function, the proposed method
in this article also achieved optimal results without auxiliary
head loss. The Potsdam dataset has abundant data samples
and high object discrimination, so simpler models can already
achieve good results. The advantages of more complex models
such as DANet, CGRSeg, and ACFNet, on the contrary, are
not obvious.

Fig. 9 shows some examples of the visualization results
of each method. It can be seen that the proposed method
has the best visualization results. In particular, the predictions
of the object of impervious surface, low vegetation, and
background are more accurate, the prediction of the object
of the tree is slightly improved, and the predictions of the
object of building and car are basically the same as those
of other models. Due to low vegetation having similar color
and texture to the background, it is highly similar to trees in
appearance and always appears in adjacent locations. Most
methods easily incorrectly predict low vegetation areas as
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Fig. 9. Some examples of the visualization results of the MSEONet and
other state-of-the-art methods on the Potsdam dataset.

TABLE XII

EVALUATION METRICS OF THE MSEONET MODEL AND THE
STATE-OF-THE-ART METHODS ON THE VAIHINGEN DATASET

Method Backbone au)l((l)lslsry (O‘VS I(I};))l “25/‘; ;J
DANet  ResNet-101 V8768 8031 69.11
CCNet  ResNet-101 v 8756 8004 6883
ACFNet  ResNet-101 v 8756 80.06 68.80
GCNet  ResNet-101 v 8768 8046 6923
DNLNet  ResNet-101 v 8772 8046 6927
LANet  ResNet-101 x 8758 79.88 68.59
A2FPN  ResNet-101 x 8747 8004 6873
CGRSeg  ResNet-101 x 8767 8032 69.02
MSEONet  p Net-101 x 8761 8138 70.08
(ours)

trees or backgrounds, but the proposed method is still able
to accurately distinguish between them.

2) Comparison on the Vaihingen Dataset: To further val-
idate the generality of the MSEONet model, we conducted
experiments on the Vaihingen dataset, and the evaluation
metrics of each method are shown in Table XII. The OA
value of the proposed model is 87.61%, and the highest OA
value is obtained from the DNLNet model. The proposed
model has the highest mloU and mF1 values of 70.08% and
81.38%, respectively. Due to the Vaihingen dataset containing
relatively fewer training samples, lower image resolution, and
more small-scale objects, the performance of most comparison
methods on this dataset is not as good as the results on the
Potsdam dataset.

Fig. 10 shows some examples of the visualization results
of each method. It can be seen that there are many densely
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Fig. 10. Some examples of the results of the MSEONet and other
state-of-the-art methods on the Vaihingen dataset.

TABLE XIII

EVALUATION METRICS OF THE MSEONET MODEL AND THE
STATE-OF-THE-ART METHODS ON THE FLAIR #1 DATASET

auxiliary OA  mFl1 mloU

Method Backbone loss (%) (%) (%)
DANet ResNet-101 v 72.74 69.38 55.09
CCNet ResNet-101 4 73.75 70.84 56.96
ACFNet  ResNet-101 4 69.21 67.50 52.53
GCNet  ResNet-101 4 74.16 71.82 57.87
DNLNet  ResNet-101 v 73.18 69.83 55.70
LANet ResNet-101 x 7130 6636 52.01
A2FPN ResNet-101 x 72.05 70.41 55.75
CGRSeg  ResNet-101 x 72.48 70.26 55.63
MSEONet  peNet101 % 7406 72.69 58.72

(ours)

distributed miscellaneous classes in the background, which
are adjacent to the impervious surface and have similar col-
ors, making it easily misclassified as an impervious surface.
However, the proposed method can alleviate this problem
to some extent. In addition, many models easily confuse
building shadow with impervious surfaces, resulting in build-
ing shadow areas being misclassified as impervious surfaces.
These misclassifications make the building have incomplete
segmentation results, but the proposed model is closer to the
ground truth.

3) Comparison on the FLAIR #I Dataset: To demonstrate
that the MSEONet model is also applicable to scenarios with
more classes, we conducted experiments on the FLAIR #1
dataset, and the experimental results are shown in Table XIII.
It can be seen that the proposed model has the highest mloU
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and mF'1 values, which are 72.69% and 58.72%, respectively.
The proposed methods are much better than previous methods.
Unlike typical datasets, the FLAIR #1 dataset contains richer
class information for land cover domain adaptive semantic
segmentation tasks. The dataset exhibits significant spatial
and temporal heterogeneity within the same class, which
is highly challenging. Therefore, the mloU value of the
model on this dataset is much lower than the other two
datasets.

Fig. 11 shows some examples of the visualization results
of each method. It can be seen that the proposed method has
better segmentation performance on several land cover classes,
including pervious surface, bare soil, coniferous, water, and
brushwood. In addition, the shadows of herbaceous vegetation
often cover buildings, resulting in the incomplete segmentation
of buildings. In some areas, impervious surfaces, brushwood,
and bare soil have similar colors and are difficult to distin-
guish. The proposed method can alleviate these problems to a
certain extent.

The ISPRS Potsdam dataset is used to validate the perfor-
mance of the model on the RGB bands with few classes,
the ISPRS Vaihingen dataset is used to validate the per-
formance of the model on the NIR, R, and G bands, and
the FLAIR #1 dataset is used to validate the performance
of the model on multiclasses data. Based on the above
comparative analysis, the proposed model obtained optimal
results on three datasets, and in particular, it has a better
ability to distinguish between small objects and objects with
consistent color. In addition, the advantages of our proposed
model are more obvious when there are more classes in the
dataset.

E. Efficiency Analysis

This section calculated the total number of parameters
(Params) and floating point operations per second (FLOPs)
for each part of the proposed model and some state-of-the-art
methods mentioned in Section V-D under the same experimen-
tal conditions. The calculation results are shown in Table XIV.
It can be seen that the proposed method in this article has lower
Params than the DNLNet and ACFNet models. At the same
time, FLOPs are lower than ACFNet models, and there is no
significant increase compared to DANet, CCNet, A2FPN, and
CGRSeg. Combined with the conclusion in Section V-D, it can
be seen that the proposed method in this article has achieved
better segmentation results and saved memory resources to a
certain extent without significantly increasing computational
complexity.

As can be seen from Table XIV, compared with the base
model, the MSCA module in our proposed model takes
up most of the FLOPs and Params. The total number of
parameters in the CEE and EPFO modules is only 0.204 M,
which is much smaller than the other modules. Meanwhile,
the FLOPs of the CEE and EPFO modules are only 0.006 T,
which is approximately (1/10) of the FLOPs of MSCA
modules.
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Fig. 11. Some examples of the results of the MSEONet and other
state-of-the-art methods on the FLAIR #1 dataset.

TABLE XIV

EFFICIENCY ANALYSIS FOR EACH PART OF THE PROPOSED MODEL AND
SOME STATE-OF-THE-ART METHODS

Methods FLOPs (T) Params (M)
DANet 0.289 66.454
CCNet 0.279 66.447

ACFNet 0.349 84.997
GCNet 0.18 42.812

DNLNet 0.077 376
LANet 0.231 55.506
A2FPN 0.276 66.251

CGRSeg 0.286 66.645

Base model 0.218 59.305
0.287 72.94

Base model + MSCA (+0.069) (+13.635)
0.293 73.144

MSEONet (ours) (+0.006) (+0.204)

VI. CONCLUSION

In this article, a multiscale remote sensing image semantic
segmentation network based on edge optimization is proposed,
namely, MSEONet. It can comprehensively extract contextual
information from both global and multiscale perspectives
and optimize edge segmentation results for high efficiency.
In particular, we propose an optimization module based on
edge points to solve the problem of boundary loss during
upsampling through point rendering. In addition, in order to
adaptively select UPs, the CEE module is proposed to extract
multiclass edge information quickly. To validate the proposed
approach, we conducted experiments on three high-resolution
remote sensing image semantic segmentation datasets: the
ISPRS Potsdam 2-D dataset, the ISPRS Vaihingen 2-D dataset,
and the FLAIR #1 dataset. The results show that MSEONet
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outperforms the other methods in most of the metrics, which
demonstrates the effectiveness of the proposed method. The
results of the model are mainly determined by the MSCA
module, and the CEE and EPFO modules are only able to
accurately adjust the pixel edges that are already correctly
classified. In the future, the CEE and EPFO modules can be
applied as separate decoders in other main network architec-
tures to enhance the segmentation results without increasing
excessive computational and parameters.
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